The reproductive biology of the scleractinian coral Plesiastrea versipora in Sydney Harbour, Australia

Alisha Madsen¹, Joshua S. Madin¹, Chung-Hong Tan², Andrew H. Baird²,*

¹Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
²ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia

ABSTRACT: The scleractinian coral Plesiastrea versipora occurs throughout most of the Indo-Pacific; however, the species is only abundant in temperate regions, including Sydney Harbour, in New South Wales, Australia, where it can be the dominant sessile organism over small spatial scales. Population genetics indicates that the Sydney Harbour population is highly isolated, suggesting long-term persistence will depend upon the local production of recruits. To determine the potential role of sexual reproduction in population persistence, we examined a number of features of the reproductive biology of P. versipora for the first time, including the sexual system, the length of the gametogenetic cycles and size-specific fecundity. P. versipora was gonochoric, supporting recent molecular work removing the species from the Family Merulinidae, in which the species are exclusively hermaphroditic. The oogenic cycle was between 13 and 14 mo and the spermatogenetic cycle between 7 and 8 mo, with broadcast spawning inferred to occur in either January or February. Colony sex was strongly influenced by colony size: the probability of being male increased with colony area. The longer oogenic cycle suggests that females are investing energy in reproduction rather than growth, and consequently, males are on average larger for a given age. Alternatively, colonies may change sex from female to male as they grow. In contrast, per polyp fecundity did not vary with colony size. We conclude that the Sydney Harbour population is reproductively active and therefore has the potential to maintain current levels of abundance even without an external supply of propagules.

KEY WORDS: Coral reefs · Reproduction · Sex change · Tropicalisation · Climate change · Larval ecology

INTRODUCTION

Of the over 1500 scleractinian coral species (Cairns 1999), reproductive traits, such as sexual system and mode of larval development, are known for approximately 450 species (Baird et al. 2009b). However, nearly all of these records are from the tropics, and consequently, very little is known about the reproductive biology of corals in temperate locations. Many coral species have very large range sizes, with some extending over 60° of latitude. Consequently, these species may be ideal organisms with which to test evolutionary hypotheses, such as the role of environment in determining life history traits.

On the east Australian coastline, a number of sub-tropical coral assemblages occur to the south of the Great Barrier Reef (Veron 1993). The Solitary Islands contain the last diverse coral assemblages on the east Australian coast with ~115 scleractinian species (Harriott et al. 1994), and Lord Howe Island has the southernmost fringing reef in the Pacific with ~65 species in 33 genera (Veron 1993). High latitude corals experience lower mean annual sea surface temperatures (SST) and lower aragonite saturation states, both of which are likely to result in reduced growth and fecundity (Kleypas et al. 1999, Harriott & Banks 2002), potentially making these populations reliant on recolonization by larvae from tropical
waters (Veron & Done 1979). However, corals at high latitudes do reproduce (see summary in Fellegara et al. 2013). For example, high latitude coral communities in Japan are reproductively active and are key contributors to maintenance of local populations (van Woesik 1995, Nozawa et al. 2006).

Important features of coral reproductive biology likely to influence the evolution and ecology of species include the sexual system, the mode of larval development and mode of larval nutrition (Baird et al. 2009b). Sexual systems in scleractinian corals generally fall into one of 2 categories (Kerr et al. 2011). Individual colonies are either hermaphrodites, in which each polyp contains both male and female gametes when mature, or gonochorics, in which every polyp in a colony contains either male or female gametes. Sexuality is also a highly conserved and therefore a good indication of evolutionary relationship (Baird et al. 2009b). Similarly, there are only 2 modes of larval development in corals (Kerr et al. 2011). Fertilization is either internal with larvae brooded within the polyps, or fertilization is external following the broadcast spawning of gametes (Baird et al. 2009b, Harrison 2011). The mode of larval nutrition is either autotrophic, where oocytes are inoculated with algal symbionts from which the developing larva can derive nutrition (Richmond 1987), or lecithotrophic, where oocytes are not inoculated with symbionts, and consequently, larval development depends on maternal provisioning of the oocyte (Baird et al. 2009b).

Plesiastrea versipora is a hermatypic scleractinian coral with a very large range size, extending from Kyushu, Japan, in the northern hemisphere to South Australia, in the southern hemisphere and from the Red Sea in the west to French Polynesia in the east (Veron 2000). _P. versipora_ has traditionally been included in the Family Faviidae (Veron 2000). However, recent molecular work indicates that _P. versipora_ should be included in a separate previously unrecognized clade (Benzoni et al. 2011, Huang 2012). _P. versipora_ is rarely abundant in the tropics, if it occurs at all; however, it often dominates the benthos in temperate regions (Veron 2000). For example, a large population of _P. versipora_ occurs in Sydney Harbour at 33° S (Fig. 1). The population genetics of _P. versipora_ along the east coast of Australia suggests that the Sydney Harbour population is highly isolated and originated from a recent range expansion (Rodriguez-Lanetty & Hoegh-Guldberg 2002). Very little is known about the reproductive biology of this widespread species.

The aim of this project was to examine the reproductive biology of _Plesiastrea versipora_ in Sydney Harbour. The following specific reproductive traits were investigated: (1) sexual system, (2) sex ratio, (3) mode of larval development, (4) length of the gametogenic cycles, (5) spawning time, (6) fecundity as a function of colony size, and (7) sex as a function of colony size.

MATERIALS AND METHODS

Sydney Harbour (33° S, 151° E) is an inlet of the South Pacific Ocean. A substantial population of _Plesiastrea versipora_ occurs adjacent to Fairlight Pool, in the northern part of the Harbour, at 3 to 7 m depth on staggered rock platforms (Fig. 1). The reproductive biology of _P. versipora_ was investigated in most months for 14 mo between January 2011 and March 2012. Field trips were conducted 1 to 2 d prior to the full moon in order to capture gametes prior to spawning, which for tropical reef corals in Australia typically occurs following the full moon (Harrison et al. 1984). Prior to tissue sampling, several high resolution digital photographs were taken of whole, stand-alone, and healthy colonies, each of which included a 10 cm² scale reference plate for estimating colony area. Photographs were corrected for barrel distortion, colonies were digitally outlined, and planar...
areas were estimated using ImageJ. Coral fragments of ~4 cm² were sampled from the centre of 10 hap-hazardly selected colonies using a hammer and chisel or a 2 cm² steel punch. Fragments contained between 10 and 20 polyps. Gamete maturity is generally consistent for all polyps within a colony (Baird et al. 2011). Therefore, 1 fragment per colony was deemed adequate for capturing the state of maturity of the colony.

Fragments were fixed in 10% buffered formalde-hyde for 24 h. Following fixation samples were rinsed in distilled water and placed in 70% ethanol. For analysis fragments were then decalcified in 10% formic acid. Half of each fragment was dissected to estimate per polyp fecundity, while the other half was placed in a perforated cassette and stored in 70% ethanol and the processed for histology.

Six polyps were selected haphazardly from each fragment for dissection. Each polyp was initially sexed on the basis of the shape and texture of the gametes. Oocytes were circular or elliptical in shape, a cream colour with a clear outline and solid to the touch. In contrast, spermaries were elongate amorphous white bodies. This initial determination of the sex of the polyps was confirmed by histology, and on only one occasion was a male incorrectly classified as a female. For female polyps the number of oocytes was counted, and then the size of 10 randomly chosen oocytes was measured from high resol-ution digital images. AnalySIS FIVE image analysis software calibrated with the stereo microscope automatically calculated average oocyte size in microns based on scaled photographs.

Tissue samples set aside for histology were processed following Baird et al. (2011). Samples were first dehydrated in an alcohol series, cleared using Histo-Clear (National Diagnostics), and then embed-ded in paraffin wax. Samples were then oriented to allow both transverse and longitudinal sectioning if possible and cut with a microtome at 7 µm thickness, and 3 to 4 sections ~50 µm apart were mounted onto slides. Slides were then taken to water and stained using Mayer’s haematoxylin and Young’s eosin-erythrosine. The haematoxylin stains nuclei blue, and the eosin-erythrosine stains cytoplasmic elements various shades of red. Slides were then covered with haematoxylin for 8 min, rinsed and then covered with Scott’s tap water substitute for 30 s, rinsed again then covered with eosin-erythrosine for 3 min, rinsed and then dehydrated. Cover slips were mounted in DPX (di-n-butyle phthalate in xylene). Gamete maturity was determined using criteria modified from Vargas-Ángel et al. (2006) and Baird et al. (2011).

To examine the relationship between SST and average oocyte size throughout the sampling period, temperature data were collected using temperature loggers deployed at Little Manly within 2 km of the study site at Fairlight Pool.

In order to determine the time of spawning, 6 colonies were collected off Fairlight Pool and maintained in aquaria at Macquarie University, Sydney. Aquaria were situated indoors under fluo-rescent lights on a 12 h light:12 h dark schedule. Aquaria were not flow-through so water was changed twice daily. The colonies were maintained under these conditions for 3 wk. Aquaria were checked twice daily for the presence of gametes in the water column.

A Pearson’s chi-squared was used to determine if the sex ratio was significantly different to half females/half males using the function chi.sq.test in R. One-way ANOVA was used to determine if average oocyte geometric diameter and average per polyp fecundity differed among sampling months. Tukey’s multiple comparisons of means tests identified which months, if any, differed in mean oocyte size and per polyp fecundity. Regres-sions were used to determine the strength and sig-nificance of relationships between log-transformed colony size and mature oocyte number and mature oocyte diameter. For these regressions, only data from January 2012 were used, because histology suggested that almost all colonies were mature in this month (n = 30). Logistic regression was used to test for an association between log-transformed colony size and sex using the glm function with binomial family in R.

RESULTS

Sexuality, mode of larval development and sex ratio

Plesiastrea versipora at Fairlight Pool is a gono-chore. All polyps examined both by dissections and histology contained gametes of only one sex, and all polyps within a colony were of the same sex. P. versi-pora is also highly likely to be a broadcast spawner. Planulae were never observed in histological sec-tions. In addition, there was a large reduction in per polyp fecundity between January and February in 2012. A total of 140 colonies were sampled in the study: 51 were females, 55 males and a further 34 colonies did not contain gametes. This sex ratio was not significantly different from 1:1 ($\chi^2 = 0.151; \text{df} = 1; p = 0.698$).
Gametogenetic cycles and size of oocytes

Stage I oocytes were only evident in December in 50% of the female colonies, indicating that oogenesis commenced in this month (Fig. 2). Interestingly, Stage I oocytes were often observed in the same mesentery as Stage IV oocytes, suggesting that the oogenic cycle is longer than 12 mo (Fig. 2A). Following the initiation of oogenesis in December, the proportion of colonies with Stage II (Fig. 2B) and III oocytes (Fig. 2C) increased until November, when 100% of colonies had mature oocytes (Fig. 2D & Fig. 3). Mature oocytes continued to be observed in 30 to 50% of colonies until February (Fig. 3). Consequently, the

Fig. 2. Oogenesis in Plesiastrea versipora. (A) Stage I and Stage IV oocytes in the same polyp indicating 2 overlapping oogenic cycles; (B) Stage II oocytes; (C) Stage III oocytes; (D) Stage IV oocytes

Fig. 3. Proportion of Plesiastrea versipora colonies with oocytes in various stages of maturity as determined by histology between January 2011 and March 2012. No samples were collected in either March or October 2011. Sample sizes as follows: Jan 2011 = 4; May 2011 = 3; Jun 2011 = 2; Jul 2011 = 2; Aug 2011 = 3; Sep 2011 = 5; Nov 2011 = 1; Dec 2011 = 2; Jan 2012 = 13; Feb 2012 = 3; Mar 2012 = 6; only males were sampled in February 2011 and no males were processed for histology in April 2011
The oogenic cycle was estimated to last between 11 and 14 mo, commencing in December and lasting until November the following year at the earliest or February the year after that at the latest. These changes in the stage of maturity of oocytes were supported by changes in oocyte diameter, which varied significantly between months (ANOVA: df = 12, \(F = 39.9, p < 0.001 \); Fig. 4). In April 2011, when oocytes were first dissected, the mean diameter was 235 ± 14.7 SE (Fig. 4). Oocytes grew rapidly between April and June, increasing in mean diameter by over 50% to 401 ± 14.8 SE (Fig. 4). Between June and November there was no significant change in oocyte diameter, generally coinciding with the coldest months of the year (Fig. 4). Between November and December there was a significant jump in oocytes diameter to 517 ± 34.3 SE after which the mean oocyte size decreased slightly until March (Fig. 4).

Stage I spermaries (Fig. 5A) were first observed in July 2011 (Fig. 6). Following this, the proportion of colonies with Stage II (Fig. 5B) and III (Fig. 5C) spermaries increased until January 2012, when 100% of colonies had Stage IV gametes (Fig. 5D & Fig. 6). Consequently, the spermatogenetic cycle was between 7 and 8 mo long, 3 to 7 mo shorter than the oogenic cycle.

Reproductive traits as a function of colony size

The smallest colony sampled had an area of 5.5 cm\(^2\). The smallest colony with gametes was a female with an area of 21.6 cm\(^2\). Above this colony size most colonies contained gametes. Mature per polyp fecundity was independent of colony area (\(p = 0.062, r^2 = 0.058 \); Fig. 8). While mature oocyte size increased slightly with increasing colony area (\(p = 0.041, r^2 = 0.054 \); Fig. 9), area only explained 5.4% of the variation in per polyp fecundity. Larger colonies, in particular those greater than 400 cm\(^2\), were more likely to be male than female (\(n = 104, p < 0.001 \); Fig. 10).

Colony fecundity and spawning time

Average per polyp fecundity varied throughout the year (ANOVA df = 12, \(F = 15.01, p < 0.001 \); Fig. 7). Polyp fecundity was high in January 2011 (Fig. 7). In February 2011, all colonies sampled were male, suggesting that most females released gametes following the full moon in January 2011 (Fig. 7). Per polyp fecundity was next estimated in April 2011 at 28.3 ± 1.11 SE (Fig. 7) after which there was little change in fecundity until December 2011, coinciding with the initiation of a new gametogenetic cycle (see ‘Gametogenetic cycles and size of oocytes’ above). Fecundity peaked in February 2012 at 80.7 ± 13.32 SE oocytes per polyp (Fig. 7). Between February and March 2012 fecundity dropped dramatically to 15.8 ± 2.88 SE (Fig. 7), suggesting that ~60 mature oocytes per polyp were released following the full moon in February 2012.

DISCUSSION

Plesiastrea versipora is gonochoric, with horizontal transmission of symbionts, and is most likely a broadcast spawner. A high proportion (75%) of colonies in Sydney Harbour were breeding, indicating that high latitude and low temperature are no impediment to reproduction in this cosmopolitan species. The duration of the oogenic cycle was between 11 and 14 mo, and the spermatogenetic cycle between 7 and 8 mo. Spawning most likely occurred following the full moon in January in 2011 and February in 2012, although the presence of mature oocytes between November and February suggests that some eggs may also be released in these months. Colony size was weakly associated with oocyte size but not with per polyp fecundity. In contrast, colony size was strongly associated with sex, with all colonies greater than 400 cm\(^2\) being male.
Sexuality in corals is a highly conserved trait (Harrison 1985, Kerr et al. 2011), with very few of the recently defined molecular clades containing species with differing sexuality (Baird et al. 2009b, Harrison 2011). This suggests that sexuality is a good character for taxonomic studies. The fact that *Plesiastrea versipora* is gonochoric strongly supports the recent removal of this species from the exclusively hermaphroditic family Merulinidae into the new Clade XIV consisting only of gonochores (Huang 2012).

In contrast to sexuality, the mode of larval development is 4 times more likely to evolve between character states than sexuality (Kerr et al. 2011), and therefore, this feature of reproductive biology is less useful as an indicator of evolutionary relationships. Nonetheless, all 3 other species for which the mode of larval development is known in Clade XIV are broadcast spawners (Baird et al. 2009b), indicating that spawning is the most likely mode of larval development in *Plesiastrea versipora*. Furthermore, *P. versipora* releases gametes into the water column in Taiwan (Dai et al. 1992) and on the Great Barrier Reef (Willis et al. 1985).

Symbiodinium was never observed in mature oocytes (Fig. 2), indicating that the transmission of these obligate algal symbionts in *Plesiastrea versipora* is horizontal (i.e. each generation must acquire a new complement of symbionts from the environment). Horizontal transmission is likely to be adaptive for species with a wide latitudinal range size, allowing larvae to select symbionts most suited to local conditions following dispersal (Baird et al. 2007, Cumbo et al. 2013). In support of this hypothesis, *P. versipora* hosts *Symbiodinium* from Clade C in subtropical and tropical latitudes on the east Australian coast, whereas at temperate locations, including Sydney Harbour, it hosts Clade B (Rodriguez-Lanetty et al. 2001).

Fig. 5. Spermatogenesis in *Plesiastrea versipora*. (A) Stage I spermaries; (B) Stage II spermaries; (C) Stage III spermaries; (D) Stage IV spermaries.
Gametogenic cycles in *Plesiastrea versipora* were longer than in most tropical broadcast spawning species that usually have a single annual oogenic cycle of between 5 and 9 mo and a spermatogenic cycle of between 3 and 5 mo (Harrison & Wallace 1990). An extended period of gametogenesis is most probably due to the lower annual average mean sea temperatures at high latitude because the rates of most biological process are positively correlated with temperature (Crossins & Bowler 1987). In addition, low levels of photosynthetically available radiation at high latitudes are likely to limit the energy available to invest in reproduction in photosynthetic organisms, such as corals (van Woesik et al. 2006). Similarly, oogenesis in *Alveopora japonica* at high latitudes in Japan was 8 mo longer than that of a con-generic species *A. daedalea* in the Red Sea (Harri et al. 2001). In addition, the solitary gonochoric brooding coral *Leptopsammia pruvoti* in temperate waters of the Mediterranean has an oogenic cycle of 24 mo and a spermatogenic cycle of 12 mo, further suggesting that gametes take longer to reach maturity in temperate regions (Goffredo et al. 2006). Temperature also appeared to influence various stages in the oogenic cycle. For example, the initiation of oogenesis and the final maturation of oocytes coincided with rapid rises in water temperature in December (Fig. 4), providing further support for the suggestion that temperature has a primary role in gamete development (Harri et al. 2001, Nozawa et al. 2006, van Woesik et al. 2006).

Although spawning was not observed directly, reductions in fecundity between January and February in 2011 and between February and March in 2012 suggest that most colonies spawned oocytes some time after the full moon in January in 2011 and February 2012. However, histological examination indicated mature oocytes in at least some colonies from November to February (Fig. 3). Mature oocytes are usually released around the full moon following maturation (Harrison et al. 1984), so it is possible that some colonies released some oocytes in these months. This split spawning phenomenon within populations is very common even in the tropics, where spawning is generally considered to be highly synchronous within populations (Baird et al. 2002). Alternatively, *Plesiastrea versipora* colonies may retain mature oocytes for an extended period, similar to some corals in the Persian Gulf (Bauman et al. 2011). Spawning of *P. versipora* occurs at a similar time to major spawning episodes in Moreton Bay (Fellegara et al. 2013), Lord Howe Island (Harrison
2008) and the Solitary Islands (Wilson & Harrison 2003) but 2 mo later than the peak in spawning activity on the Great Barrier Reef (Harrison et al. 1984). A similar difference in the timing of spawning with increasing latitude also occurs in the Japanese Archipelago (Baird et al. 2009a). The reproductive activity in summer in P. versipora is consistent with the idea that broadcast spawning species generally have short annual spawning periods in the warmer months of the year (Harrison et al. 1984).

Per polyp fecundity and oocyte diameter were largely independent of colony size (Figs. 8 & 9). Thus, colony fecundity was a simple function of the number of polyps, i.e. fecundity increases with colony size. This appears to be the typical pattern in scleractinian corals. For example, in 7 species of hermatypic corals at a high latitude community in Japan fecundity increased with colony size (Nozawa et al. 2006). Similarly, per polyp fecundity was independent of colony size in 6 common corals on Lizard Island on the Great Barrier Reef (Hall & Hughes 1996).

Sex was strongly associated with colony size. The probability of being a male increased with colony size, such that all colonies were male when colony area was greater than 400 cm² (Fig. 10). There are 3 possible explanations for this: (1) females are changing to males at some critical size threshold, (2) females are investing more in reproduction at the cost of investing in growth, or (3) female mortality increases at a critical size or is generally higher. Bi-directional sex change occurs in the solitary coral Ctenactis echinata (Loya & Sakai 2008); however, the cause of these sex changes has yet to be established. Repeated sampling of individuals through time will be required to determine why sexuality is associated with colony size in Plesiastrea versipora.

In conclusion, the Plesiastrea versipora population in Sydney Harbour is reproductively active and therefore has the potential to maintain current levels of abundance in the absence of external input of propagules. Reproductive traits, in particular sexuality and the putative mode of larval development, were consistent with the recent taxonomic revisions placing the species in a new clade (Huang 2012). The estimated time of spawning is consistent with other nearby locations, such as Lord Howe Island, and offset by a month or two with tropical populations of this species. Gametogenetic cycles were longer than those of species with similar-sized gametes in the tropics, suggesting that environmental variables, such as temperature and light, have a strong influence on the length of the gametogenetic cycle.
Acknowledgements. Permission to permanently tag colonies was given by the DOPI (permit P11/0041-1.0). We thank M. Diaz, J. Martinelli, M. Kosnik and O. Luiz for their help on field trips. This project was assisted by the New South Wales Government through its Environmental Trust and by the Australia Research Council through funds provided to A.H.B. via the ARC Centre of Excellence for Coral Reef Studies.

LITERATURE CITED

Veron JEN (2000) Corals of the world. AIMS, Townsville

Madsen et al.: Scleractinian coral Plesiastrea versipora in Sydney Harbour

Editorial responsibility: Matthias Seaman, Oldendorf/Luhe, Germany

Submitted: September 4, 2013; Accepted: December 17, 2013

Proofs received from author(s): January 19, 2014