Improvements over three generations of climate model simulations for eastern India

L. Das¹, J. D. Annan¹, J. C. Hargreaves¹, S. Emori³

¹RIGC / JAMSTEC, 3173-25 Showamachi, Kanazawa-ku, Yokohama City, Kanagawa 236-0001, Japan
²Department of Agricultural Meteorology and Physics, BCKV, Mohanpur, Nadia 741-252, India
³National Institutes for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan

Email: daslalu@yahoo.co.in

Climate Research 51:201–216 (2012)

Supplement
Fig. S1. Variation of various performance indices for precipitation, calculated between observed values and each model simulation in the SAR, TAR and AR4 for different seasons. Models showing higher R and d-index values are considered better; this is reversed for the other error indices.
Fig. S2. Variation of various performance indices for temperature calculated between observed values and each model simulation in the SAR, TAR and AR4. Models showing higher R and d-index values are considered better; this is reversed for the other error indices.
Fig. S3. Rank of each model on the basis of overall model improvement indices for (a) total accumulated rank of 4 seasons (MAM, JJAS, ON, DJF) for rainfall according to different indices and (b) total accumulated rank of 4 seasons (MAM, JJAS, ON, DJF) for temperature according to different indices. (c) Total accumulated rank obtained from the accumulated rank of rainfall and temperature for different indices. (d) The rank of the current generation (AR4) models calculated from the accumulated rank of rainfall and temperature of 4 seasons analysing AR4 models only.
Fig. S4. Distribution of observed and GCM topography (left), observed and simulated JJAS mean temperature (middle) and topography-corrected temperature (right) over the GWBN region.
Fig. S5. Variation of ranks of performance of different AR4 models calculated for different statistical indices without topography correction (WoC) and with topography correction (WC) in the monsoon season (JJAS)