The following supplement accompanies the article

Frozen ground temperature trends associated with climate change in the Tibetan Plateau Three River Source Region from 1980 to 2014

Siqiong Luo*, Xuewei Fang, Shihua Lyu, Di Ma, Yan Chang, Minghong Song, Hao Chen

*Corresponding author: lsq@lzb.ac.cn


Fig. S1. Trends in seasonal and annual mean shallow soil temperature in the TRSR stations. (Line 1, 2, 3 and 4 are 5, 10, 15 and 20 cm soil layer, Column a, b, c, d and e are spring, summer, autumn, winter and annual. Circles show positive trends. Gray indicate trends significant at the 5% level, black indicate trends significant at the 1% level)
Fig. S2. Trends in seasonal and annual mean deep soil temperature in the TRSR stations. (Line 1, 2, 3 and 4 are 40, 80, 160 and 320 cm soil layer, Column a, b, c, d and e is spring, summer, autumn, winter and annual. Circles and triangles show positive and negative trends. Gray indicate trends significant at the 5% level, black indicate trends significant at the 1% level)

Fig. S3. Trends in air temperature, precipitation, maximum depth of frozen ground and maximum depth of snow in the TRSR stations. (Line 1 and 2 are air temperature and precipitation, Column a, b, c, d and e are spring, summer, autumn, winter and annual. a3 is maximum depth of frozen ground . b3 is maximum depth of snow. Circles and triangles show positive and negative trends. Gray indicate trends significant at the 5% level, black indicate trends significant at the 1% level. Star show no trends)