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A. GCM bias correction  

Previous studies on historical runs of the CMIP5 ensemble show that for rainfall, both the mean and variance 
over the Australian region are often underestimated (Irving et al. 2012). This dry bias is carried though via the 
SDM, due to sampling issues of low frequency-high rainfall events (Timbal et al. 2009). 

Initial testing of the reconstructed historical streamflow data (before calibration of the downscaled CMIP5 
data was performed) clearly shows this bias was passed onto the streamflow reconstructions. For this reason, a 
calibration step to remove systematic biases was required and applied initially for the 1950-2005 period, and 
then to the 2006-2100 period, assuming the relationship of the model outputs to the observations remains the 
same throughout the 21st century.  

For the rainfall data, correction of both the monthly mean and the variance was needed. This was done as per 
the formula below, where P = precipitation, 𝑃 = is the long-term mean precipitation (with a different value for 
each calendar month), σ = the standard deviation. Subscript c = the calibrated precipitation, 1 being the first 
stage, 2 the second, m = uncorrected model data, a = AWAP data.  
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This method “normalised” the monthly mean and annual cycle by multiplying the model timeseries by the 
ratio of the monthly AWAP to model mean (1).  It then subtracts the new annual cycle from the new 
timeseries and multiplies the anomalies by the ratio of the AWAP to model standard deviation in order to 
correct the variance (2). Finally it adds the annual cycle back in. This was performed for each catchment and 
GCM individually, for each month of the year. 

Due to very small mean biases for temperature, the calibration for the model temperature was simply to inflate 
the variance. Here, T = maximum temperature and 𝑇 = monthly mean maximum temperature. The method 
used was essentially the same as correcting the precipitation variance, as seen by (3), where the anomalies 
were corrected without causing significant change to the mean.  

 

(3)  𝑇" = 𝑇% − 𝑇% × ,(
,)
+ 𝑇% 

 

The GCM data was then passed through the streamflow reconstruction method, and corrected for instances 
where streamflow was reported as negative (possible due to the simplicity of the model used). Here, negative 
streamflows were set to zero, and, to prevent artificially increasing the total streamflow, the remaining 
streamflow was then normalised against the observations, following the same method as that applied to 
rainfall above (equations 1 and 2).  
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The same methods were then applied to the future projection, using the existing ratios (observations to 
historical GCM runs) of the mean and standard deviation in both rainfall and temperature; therefore assuming 
that the biases between observations and GCM downscaled data remain constant in future climate simulations.  

 

B. GCM Ranking  

The final stage of the GCM evaluation was to rank the downscaled and calibrated models according to their 
performance in reconstructing the streamflow mean and variance to determine if some models were 
performing poorly. Downscaled models were ranked on the two measures, whereby the closer the average 
reconstructed values were to 100% the better the model performance. To combine these two into an overall 
ranking, the rank of the mean and variance was added up for each model and ordered from smallest to largest. 
These rankings can be seen in Table S1. 

Figure 4a in main text indicates that no one model performs particularly badly and most show outliers 
overestimating the mean by up to 40%. A similar result is found for the variance (Figure 4b), although for a 
negative bias. Two models, CCSM4 and MPI-ESM-MR were ranked in the top 5 for both measures, whilst 
MIROC5 was in the bottom 5 for both (Table S1). 

Previous evaluations of model performance in simulating weather and climate phenomena over Australia most 
pertinent to this study are provided in Table S1. The M-Statistic, a skill score developed by Watterson et al. 
(1996), is presented for southeastern Australia’s temperature and Australia’s rainfall (Watterson et al. 2013). 
In addition the ability for the model to reproduce the latitude of the sup-tropical ridge across eastern Australia 
(Grose et al. 2015) is presented.  

When comparing the top and bottom models to previous analyses focusing on direct climate model outputs for 
rainfall and temperature (Watterson et al. 2013) or the models’ ability to reproduce the sub-tropical ridge 
(Grose et al. 2015) there is little agreement. This is not unexpected as the statistical downscaling relies on 
large-scale predictors, many in the lower troposphere and hence is bypassing the surface variables which may 
show larger biases due to systematic errors in model physical parameterisations rather than model dynamics. 
Furthermore, the applied calibration has also improved the original model output.  

Testing the impact of the worse performing models on the overall results, it was found that removing the 
bottom 5 ranked models from our analysis made little difference to the reconstructed mean and the variance, 
while calculating the average of only the top 5 ranked models improved the mean and variance by less than 
1%. These small changes while sub-sampling the ensemble of 22 downscaled models suggested that there is 
little expected improvement in the reliability of the future projections by removing models from this analysis.  

Nevertheless, future projections across all models are compared to the limited sub-sampling of the bottom and 
top 5 ranked models in order to evaluate if that impacts the mean climate change response. These sub-sampled 
models are found to project similar changes (within approximately 5%) in streamflow for both RCP pathways 
(Table S2). The overall impact of selecting models on the annual streamflow projections is small and not 
consistent, therefore suggesting no particular bias toward a drier or wetter future if only a small sub-sample of 
the models are considered. This again implies that there is limited impact in selecting models based on its 
performance at reproducing the current climate, as the statistical downscaling reduces the largest model 
biases.  
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Table S1: Results of the models’ evaluation relevant to this study: skill score (M-statistic) for temperature in 
southeast Australia and rainfall across Australia (Watterson et al. 2013), evaluation of the model ability to 
reproduce the sub-tropical ridge (Grose et al., 2015); model rankings in this study with respect to the mean 
and variance of reconstructed streamflow, and the two combined.. Scores in bold blue (red) indicate the top 5 
(bottom 5) model performances.  

 
Model 

M-Stat 
Temp.South 
Aus 

M-Stat 
Precip Aus STR eval Streamflow Rank 

Mean Variance All 
ACCESS1-0 575 552 2 8 16 13 
ACCESS1-.3 492 544 2 19 6 10 
bcc-csm1-1-m 573 525 2 12 19 19 
BNU-ESM 388 451 3 22 15 18 
CanESM2 542 492 2 9 3 5 
CCSM4 519 379 2 2 4 2 
CMCC-CMS 471 564 1 13 18 17 
CNRM-CM5 587 602 1 20 13 16 
CSIRO-mk3.6 431 482 3 15 7 8 
GFDL-ESM2G 383 472 2 16 14 15 
GFDL-ESM2M 458 469 2 4 17 12 
HadGEM2-CC 533 541 1 14 1 3 
IPSL-CM5A-LR 395 403 3 1 11 6 
IPSL-CM5A-MR 477 404 2 17 20 21 
IPSL-CM5B-LR 424 596 3 5 12 9 
MIROC5 488 432 2 21 22 22 
MIROC5-ESM 434 342 3 18 9 14 
MIROC5-ESM-CHEM 450 333 3 7 5 4 
MPI-ESM-LR 542 593 2 10 8 7 
MPI-ESM-MR 513 640 1 3 2 1 
MRI-CGCM3 511 599 1 6 21 20 
NorESM1-M 480 347 2 11 10 11 
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Table S2: Downscaled climate model mean changes for annual Victorian streamflows using the R1 
regression. Changes are provided for the 2035-2065 and 2070-2100 periods in percent change from the 
reconstructed1975-2005 reference period, following the RCP 4.5 (top) and RCP 8.5 (bottom). Changes are 
shown using the full statistical reconstructions including monthly temperature for the full ensemble mean and 
for the five highest ranked and five lowest ranked models mean based on several model evaluation tests 
performed. 

2050 
Ranking method RCP 4.5 RCP 8.5 
Full Ensemble -16.2 -21.4 
 Top 5 Bottom 5 Top 5 Bottom 5 
Streamflow -10.8 -16.5 -20.3 -25.5 
M-Stat – Temp -15.3 -21.9 -24.6 -18.9 
M-Stat – Precip -15.2 -12.3 -21.3 -14.2 
STR  -14.0 -17.2 -23.2 -15.6 
2085 
Ranking method RCP 4.5 RCP 8.5 
Full Ensemble -26.1 -44.8 
 Top 5 Bottom 5 Top 5 Bottom 5 
Streamflow -24.1 -26.7 -40.3 -49.2 
M-Stat – Temp -27.9 -25.0 -44.3 -50.6 
M-Stat – Precip -25.4 -15.9 -41.4 -31.2 
STR  -28.8 -21.1 -44.1 -47.3 
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