Validation of otolith $\delta^{18} \mathrm{O}$ values as effective natural tags for shelf-scale geolocation of migrating fish

Audrey M. Darnaude*, Ewan Hunter

*Corresponding author: audrey.darnaude@cnrs.fr

Marine Ecology Progress Series https://doi.org/10.3354/meps12302

Table S1. Expected otolith $\delta^{18} \mathrm{O}$ signatures (mean $\pm \mathrm{SD}$ in \%o) at monthly, seasonal (LA/EW, LW/ES, LS/ES and LS/EA) and annual (year) scales, over the full distribution range (global) or in each area frequented over the course of the year. At each spatio-temporal scale, the number of daily temperature/salinity observations extracted from the 1997, 1998 and 1999 datasets and used for $\delta^{18} \mathrm{O}$ calculations is given in brackets (italics). EC: English Channel; SNS: Southern North Sea; WNS: Western North Sea; CNS: Central North Sea; ENS: Eastern North Sea; NNS: Northern North Sea.

	EC	SNS	WNS	CNS	ENS	NNS	global
year	$\begin{aligned} & \mathbf{1 . 2 9} \pm \mathbf{0 . 8 0} \\ & (N=5475) \end{aligned}$	$\begin{gathered} \mathbf{1 . 2 5} \pm \mathbf{0 . 9 8} \\ (N=17520) \end{gathered}$	$\begin{gathered} \mathbf{1 . 7 1} \pm \mathbf{1 . 0 7} \\ (N=15330) \end{gathered}$	$\begin{gathered} \mathbf{1 . 6 1} \pm \mathbf{0 . 9 0} \\ (N=27375) \end{gathered}$	$\begin{gathered} \mathbf{1 . 3 2} \pm \mathbf{0 . 7 7} \\ (N=26280) \end{gathered}$	$\begin{gathered} \mathbf{2 . 1 8} \pm \mathbf{0 . 5 3} \\ (N=44895) \end{gathered}$	$\begin{gathered} \mathbf{1 . 6 9} \pm \mathbf{0 . 9 1} \\ (N=136875) \end{gathered}$
LA/EW	$\begin{aligned} & \mathbf{1 . 6 1} \pm \mathbf{0 . 4 9} \\ & (N=1380) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 7 6} \pm \mathbf{0 . 5 1} \\ & (N=4416) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 0 7} \pm \mathbf{0 . 5 7} \\ & (N=3864) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 0 3} \pm \mathbf{0 . 5 0} \\ & (N=6900) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 8 2} \pm \mathbf{0 . 3 9} \\ & (N=6624) \end{aligned}$	$\begin{gathered} \mathbf{2 . 1 7} \pm \mathbf{0 . 3 5} \\ (N=11316) \end{gathered}$	$\begin{gathered} \mathbf{1 . 9 9} \pm \mathbf{0 . 4 9} \\ (N=34500) \end{gathered}$
LW/ES	$\begin{aligned} & \mathbf{2 . 2 2} \pm \mathbf{0 . 1 5} \\ & (N=1335) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 3 0} \pm \mathbf{0 . 3 0} \\ & (N=4272) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 5 1} \pm \mathbf{0 . 4 6} \\ & (N=3738) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 5 7} \pm \mathbf{0 . 2 2} \\ & (N=6675) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 3 6} \pm \mathbf{0 . 1 7} \\ & (N=6408) \end{aligned}$	$\begin{gathered} \mathbf{2 . 6 9} \pm \mathbf{0 . 1 2} \\ (N=10947) \end{gathered}$	$\begin{gathered} \mathbf{2 . 5 1} \pm \mathbf{0 . 3 1} \\ (N=33375) \end{gathered}$
LS/ES	$\begin{aligned} & \mathbf{1 . 1 3} \pm \mathbf{0 . 4 6} \\ & (N=1380) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 8 5} \pm \mathbf{0 . 6 5} \\ & (N=4416) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 4 4} \pm \mathbf{0 . 8 8} \\ & (N=3864) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 3 6} \pm \mathbf{0 . 6 3} \\ & (N=6900) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 0 3} \pm \mathbf{0 . 5 6} \\ & (N=6624) \end{aligned}$	$\begin{gathered} \mathbf{2 . 2 2} \pm \mathbf{0 . 3 6} \\ (N=11316) \end{gathered}$	$\begin{gathered} \mathbf{1 . 5 1} \pm \mathbf{0 . 8 0} \\ (N=34500) \end{gathered}$
LS/EA	$\begin{aligned} & \mathbf{0 . 2 3} \pm \mathbf{0 . 2 1} \\ & (N=1380) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 1 0} \pm \mathbf{0 . 4 6} \\ & (N=4416) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 8 3} \pm \mathbf{0 . 6 1} \\ & (N=3864) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 5 0} \pm \mathbf{0 . 4 5} \\ & (N=6900) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 1 0} \pm \mathbf{0 . 5 2} \\ & (N=6624) \end{aligned}$	$\begin{gathered} \mathbf{1 . 6 7} \pm \mathbf{0 . 5 7} \\ (N=11316) \end{gathered}$	$\begin{gathered} \mathbf{0 . 7 8} \pm \mathbf{0 . 8 5} \\ (N=34500) \end{gathered}$
November	$\begin{gathered} \mathbf{1 . 0 7} \pm \mathbf{0 . 2 1} \\ (N=450) \end{gathered}$	$\begin{aligned} & \mathbf{1 . 1 9} \pm \mathbf{0 . 2 9} \\ & (N=1440) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 6 3} \pm \mathbf{0 . 3 5} \\ & (N=1260) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 4 7} \pm \mathbf{0 . 3 2} \\ & (N=2250) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 1 9} \pm \mathbf{0 . 2 5} \\ & (N=2160) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 8 0} \pm \mathbf{0 . 2 8} \\ & (N=3690) \end{aligned}$	$\begin{gathered} \mathbf{1 . 4 9} \pm \mathbf{0 . 4 0} \\ (N=11250) \end{gathered}$
December	$\begin{gathered} \mathbf{1 . 6 7} \pm \mathbf{0 . 1 9} \\ (N=465) \end{gathered}$	$\begin{aligned} & \mathbf{1 . 8 3} \pm \mathbf{0 . 2 2} \\ & (N=1488) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 1 4} \pm \mathbf{0 . 3 1} \\ & (N=1302) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 1 1} \pm \mathbf{0 . 2 7} \\ & (N=2325) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 9 2} \pm \mathbf{0 . 2 0} \\ & (N=2232) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 2 0} \pm \mathbf{0 . 1 7} \\ & (N=3813) \end{aligned}$	$\begin{gathered} \mathbf{2 . 0 5} \pm \mathbf{0 . 2 8} \\ (N=11625) \end{gathered}$
January	$\begin{gathered} \mathbf{2 . 0 9} \pm \mathbf{0 . 2 0} \\ (N=465) \end{gathered}$	$\begin{aligned} & \mathbf{2 . 2 5} \pm \mathbf{0 . 2 7} \\ & (N=1488) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 4 2} \pm \mathbf{0 . 3 2} \\ & (N=1302) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 4 9} \pm \mathbf{0 . 2 2} \\ & (N=2325) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 3 3} \pm \mathbf{0 . 1 8} \\ & (N=2232) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 5 1} \pm \mathbf{0 . 1 5} \\ & (N=3813) \end{aligned}$	$\begin{gathered} \mathbf{2 . 4 1} \pm \mathbf{0 . 2 5} \\ (N=11625) \end{gathered}$
February	$\begin{gathered} \mathbf{2 . 3 5} \pm \mathbf{0 . 1 2} \\ (N=420) \end{gathered}$	$\begin{aligned} & \mathbf{2 . 5 0} \pm \mathbf{0 . 2 1} \\ & (N=1344) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 6 1} \pm \mathbf{0 . 3 0} \\ & (N=1176) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 7 0} \pm \mathbf{0 . 1 5} \\ & (N=2100) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 5 4} \pm \mathbf{0 . 1 4} \\ & (N=2016) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 7 0} \pm \mathbf{0 . 1 3} \\ & (N=3444) \end{aligned}$	$\begin{gathered} \mathbf{2 . 6 2} \pm \mathbf{0 . 2 1} \\ (N=10500) \end{gathered}$
March	$\begin{gathered} \mathbf{2 . 2 6} \pm \mathbf{0 . 0 7} \\ (N=465) \end{gathered}$	$\begin{aligned} & \mathbf{2 . 3 6} \pm \mathbf{0 . 2 1} \\ & (N=1488) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 5 7} \pm \mathbf{0 . 4 1} \\ & (N=1302) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 6 3} \pm \mathbf{0 . 1 6} \\ & (N=2325) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 4 4} \pm \mathbf{0 . 1 0} \\ & (N=2232) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 7 3} \pm \mathbf{0 . 1 0} \\ & (N=3813) \end{aligned}$	$\begin{gathered} \mathbf{2 . 5 7} \pm \mathbf{0 . 2 6} \\ (N=11625) \end{gathered}$
April	$\begin{gathered} \mathbf{2 . 0 5} \pm \mathbf{0 . 0 8} \\ (N=450) \end{gathered}$	$\begin{aligned} & \mathbf{2 . 0 6} \pm \mathbf{0 . 2 7} \\ & (N=1440) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 3 4} \pm \mathbf{0 . 5 1} \\ & (N=1260) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 3 7} \pm \mathbf{0 . 2 0} \\ & (N=2250) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 1 2} \pm \mathbf{0 . 1 2} \\ & (N=2160) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 6 3} \pm \mathbf{0 . 0 9} \\ & (N=3690) \end{aligned}$	$\begin{gathered} \mathbf{2 . 3 5} \pm \mathbf{0 . 3 5} \\ (N=11250) \end{gathered}$
May	$\begin{gathered} \mathbf{1 . 6 5} \pm \mathbf{0 . 1 6} \\ (N=465) \end{gathered}$	$\begin{aligned} & \mathbf{1 . 4 9} \pm \mathbf{0 . 3 8} \\ & (N=1488) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 9 3} \pm \mathbf{0 . 6 1} \\ & (N=1302) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 9 1} \pm \mathbf{0 . 3 3} \\ & (N=2325) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 6 5} \pm \mathbf{0 . 2 6} \\ & (N=2232) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 4 4} \pm \mathbf{0 . 1 6} \\ & (N=3813) \end{aligned}$	$\begin{gathered} \mathbf{1 . 9 7} \pm \mathbf{0 . 5 0} \\ (N=11625) \end{gathered}$
June	$\begin{gathered} \mathbf{1 . 1 2} \pm \mathbf{0 . 1 8} \\ (N=450) \end{gathered}$	$\begin{aligned} & \mathbf{0 . 8 0} \pm \mathbf{0 . 4 2} \\ & (N=1440) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 4 2} \pm \mathbf{0 . 7 6} \\ & (N=1260) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 3 7} \pm \mathbf{0 . 4 5} \\ & (N=2250) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 0 2} \pm \mathbf{0 . 3 9} \\ & (N=2160) \end{aligned}$	$\begin{aligned} & \mathbf{2 . 2 3} \pm \mathbf{0 . 2 8} \\ & (N=3690) \end{aligned}$	$\begin{gathered} \mathbf{1 . 5 1} \pm \mathbf{0 . 7 1} \\ (N=11250) \end{gathered}$
July	$\begin{gathered} \mathbf{0 . 6 2} \pm \mathbf{0 . 1 9} \\ (N=465) \end{gathered}$	$\begin{aligned} & \mathbf{0 . 2 7} \pm \mathbf{0 . 4 3} \\ & (N=1488) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 9 8} \pm \mathbf{0 . 7 9} \\ & (N=1302) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 8 1} \pm \mathbf{0 . 5 0} \\ & (N=2325) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 4 1} \pm \mathbf{0 . 5 1} \\ & (N=2232) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 9 9} \pm \mathbf{0 . 4 3} \\ & (N=3813) \end{aligned}$	$\begin{gathered} \mathbf{1 . 0 6} \pm \mathbf{0 . 8 7} \\ (N=11625) \end{gathered}$
August	$\begin{gathered} \mathbf{0 . 2 0} \pm \mathbf{0 . 1 3} \\ (N=465) \end{gathered}$	$\begin{aligned} & \mathbf{- 0 . 1 2} \pm \mathbf{0 . 4 1} \\ & (N=1488) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 6 9} \pm \mathbf{0 . 7 2} \\ & (N=1302) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 4 1} \pm \mathbf{0 . 4 9} \\ & (N=2325) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 0 1} \pm \mathbf{0 . 5 7} \\ & (N=2232) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 7 9} \pm \mathbf{0 . 5 4} \\ & (N=3813) \end{aligned}$	$\begin{gathered} \mathbf{0 . 7 4} \pm \mathbf{0 . 9 5} \\ (N=11625) \end{gathered}$
September	$\begin{gathered} \mathbf{0 . 0 8} \pm \mathbf{0 . 1 1} \\ (N=450) \end{gathered}$	$\begin{aligned} & \mathbf{- 0 . 0 5} \pm \mathbf{0 . 3 7} \\ & (N=1440) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 7 0} \pm \mathbf{0 . 5 3} \\ & (N=1260) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 3 1} \pm \mathbf{0 . 3 7} \\ & (N=2250) \end{aligned}$	$\begin{aligned} & \mathbf{- 0 . 1 4} \pm \mathbf{0 . 5 1} \\ & (N=2160) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 6 2} \pm \mathbf{0 . 6 2} \\ & (N=3690) \end{aligned}$	$\begin{gathered} \mathbf{0 . 6 4} \pm \mathbf{0 . 8 8} \\ (N=11250) \end{gathered}$
October	$\begin{gathered} \mathbf{0 . 4 2} \pm \mathbf{0 . 1 9} \\ (N=465) \end{gathered}$	$\begin{aligned} & \mathbf{0 . 4 7} \pm \mathbf{0 . 3 3} \\ & (N=1488) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 0 9} \pm \mathbf{0 . 4 1} \\ & (N=1302) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 7 7} \pm \mathbf{0 . 3 3} \\ & (N=2325) \end{aligned}$	$\begin{aligned} & \mathbf{0 . 4 2} \pm \mathbf{0 . 3 6} \\ & (N=2232) \end{aligned}$	$\begin{aligned} & \mathbf{1 . 6 0} \pm \mathbf{0 . 5 3} \\ & (N=3813) \end{aligned}$	$\begin{gathered} \mathbf{0 . 9 6} \pm \mathbf{0 . 6 5} \\ (N=11625) \end{gathered}$

Table S2 - Results of the two-way (month \times sub-stock) unbalanced PERM ANOVA on predicted monthly $\delta^{18} \mathrm{O}$ values (A) and results of the Mann-Whitney-Wilcoxon post-hoc tests among (B) pairs of sub-stocks for each month and (C) pairs of months for each of the 3 sub-stocks (${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$).
(A)

	Df	MeanSq	F-stat	N.perm	P.param	$\operatorname{Pr}(>\mathrm{F})$
Month	11	19.55	342.90	999	$1.120 \mathrm{e}-246$	$* * *$
Sub-stock	2	32.98	578.35	999	$2.560 \mathrm{e}-139$	$* * *$
Month \times sub-stock	22	1.63	28.51	999	$5.971 \mathrm{e}-78$	$* * *$
Residuals	585	0.06	NA	NA	NA	NA

(B) The cells in grey indicate months when differences of $\delta^{18} \mathrm{O}$ values are significant among all three sub-stocks.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
$\mathbf{A} \neq \mathbf{B}$	$*$	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$
$\mathbf{A} \neq \mathbf{C}$	$* * *$	$* *$	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	$* * *$	$* *$	$* * *$	$* *$	ns
$\mathbf{B} \neq \mathbf{C}$	ns	ns	ns	$*$	ns	ns	ns	$*$	$* *$	$* * *$	ns	$*$

(C) The cells in grey indicate month pairs for which $\delta^{18} \mathrm{O}$ values differ significantly irrespective of the sub-stock (A, B or C).

Table S3 - Results of the two-way (season \times sub-stock) unbalanced PERM ANOVA on predicted seasonal $\delta^{18} \mathrm{O}$ values (A) and results of the Mann-Whitney-Wilcoxon post-hoc tests among (B) pairs of sub-stocks for each season and (C) pairs of seasons for each of the 3 substocks ($* \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$). Seasons: LW/ES $=$ late winter/early spring, LS/ES = late spring/early summer, LS/EA = late summer/early autumn and LA/EW = late autumn/early winter.
(A)

	Df	MeanSq	F-stat	N.perm	P.param	$\operatorname{Pr}(>F)$
Season	3	50.76	416.39	999	$4.87 \mathrm{e}-147$	$* * *$
Sub-stock	2	30.53	250.45	999	$4.21 \mathrm{e}-80$	$* * *$
Season \times sub-stock	6	4.05	33.19	999	$1.12 \mathrm{e}-34$	$* *$
Residuals	609	0.12	-	-	-	-

(B) Grey columns indicate seasons when $\delta^{18} \mathrm{O}$ value differences are significant among all three sub-stocks.

	LW/ES	LS/ES	LS/EA	LA/EW
$\mathbf{A} \neq \mathbf{B}$	$* * *$	$* * *$	$* * *$	$* *$
$\mathbf{A} \neq \mathbf{C}$	$* * *$	$* * *$	$* * *$	$*$
$\mathbf{B} \neq \mathbf{C}$	ns	ns	$* *$	ns

(C) For each sub-stock (A, B and C), the grey cells indicate season pairs for which $\delta^{18} \mathrm{O}$ values differ significantly.

		A				B				C			
		LW/ES	LS/ES	LS/EA	LA/EW	LW/ES	LS/ES	LS/EA	LA/EW	LW/ES	LS/ES	LS/EA	LA/EW
A	LW/ES		***	***	***	***	***	***	***	***	***	***	***
	LS/ES			***	ns	ns	***	***	**	ns	***	***	**
	LS/EA				***	***	ns	***	ns	***	ns	***	*
	LA/EW					ns	***	***	**	**	***	***	*
B	LW/ES						***	***	***	ns	***	***	**
	LS/ES							***	***	***	ns	**	***
	LS/EA								***	***	***	**	***
	LA/EW									***	***	***	ns
C	LW/ES										***	***	**
	LS/ES											***	**
	LS/EA												***
	LA/EW												

Table S4 - Results from the two-way (season \times sub-stock) unbalanced PERM ANOVA on observed seasonal $\delta^{18} \mathrm{O}$ values (A) and results of the Mann-Whitney-Wilcoxon post-hoc tests among (B) pairs of sub-stocks for each season and (C) pairs of seasons for each of the 3 sub-stocks (${ }^{*} \mathrm{p}<0.05$, ${ }^{* *} \mathrm{p}<0.01$, ${ }^{* * *} \mathrm{p}<0.001$). Seasons: LW/ES $=$ late winter/early spring, LS/ES = late spring/early summer, LS/EA = late summer/early autumn and $\mathrm{LA} / \mathrm{EW}=$ late autumn/early winter.
(A)

	Df	MeanSq	F-stat	N.perm	P.param	Pr (>F)
Season	3	8.51	82.29	999	1.85 e-27	${ }^{* * *}$
Sub-stock	2	10.73	103.71	999	1.37 e-25	${ }^{* * *}$
Season \times sub-stock	6	0.25	2.43	999	$3.06 \mathrm{e}-02$	0.02
Residuals	105	0.10	-	-	-	-

(B) Grey columns indicate seasons when $\delta^{18} \mathrm{O}$ value differences are significant among all three sub-stocks.

	LW/ES	LS/ES	LS/EA	LA/EW
$\mathbf{A} \neq \mathrm{B}$	$* * *$	$* * *$	$* * *$	$*$
$\mathrm{~A} \neq \mathrm{C}$	$* * *$	$* * *$	$* * *$	$*$
$\mathrm{~B} \neq \mathrm{C}$	ns	ns	$* * *$	ns

(C) For each sub-stock (A, B and C), the grey cells indicate season pairs for which $\delta^{18} \mathrm{O}$ values differ significantly.

		A				B				C			
		LW/ES	LS/ES	LS/EA	LA/EW	LW/ES	LS/ES	LS/EA	LA/EW	LW/ES	LS/ES	LS/EA	LA/EW
A	LW/ES		***	***	***	***	***	***	***	***	***	***	***
	LS/ES			***	ns	ns	***	***	***	*	***	***	**
	LS/EA				***	***	*	***	*	***	ns	***	*
	LA/EW					ns	***	***	*	*	***	***	*
B	LW/ES						***	***	***	ns	***	***	**
	LS/ES							***	***	***	ns	*	***
	LS/EA								***	***	***	***	***
	LA/EW									***	***	***	ns
C	LW/ES										***	***	***
	LS/ES											***	***
	LS/EA												***
	LA/EW												

