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Appendix 1. Model specification

State variables 

Our model is an adaptation of that described by Speirs et al.
(2005), itself based on the methodology of Gurney et al.
(2001). It describes a domain from 30 to 80° N and 80° W to
90° E, divided into cells measuring 0.25° N by 0.5° E, each
identified by a vector address x ≡ {N, E}, where N and E
respectively represent the latitude and longitude of the cell
centre. 
At each cell location, the population is divided into 3 groups.
Surface developers consist of all the developmental stages
from egg to the end of C5, and inhabit the surface water at a
nominal fixed depth (zS). Diapausers are individuals in the C5
stage that are overwintering in deep water at a depth that
depends on location (zD,x). Adults (C6s) are individuals in the
surface layer that have completed their development and can
reproduce. For the individuals apart from the adults we
define a developmental index, q, which takes a value of zero
for eggs and unity at the end of C5. We can then divide the
surface developers into a series of n classes of equal width Δq,
and the overwintering individuals into m classes of width δq.
Although the egg to adult time depends on the environment
(temperature and food) the relative durations of the inter-
moult periods remain essentially constant. We therefore have
one-to-one correspondence between the constant-width
classes of the model and the observable physiological stages,
as shown in Table A1. The model cells vary in area, so rather
than use densities we define our state variables in terms of the
total population in each cell, making the conversion to densi-
ties only during output. Thus:

Ci,x,t ≡ No. of class i developers in 
surface cell x at time t (A1) 

Dj,x,t ≡ No. of class j diapausers in 
deep cell x at time t (A2)

Ax,t,t ≡ No. of adults in 
surface cell x at time t (A3)

Transport updates

The physical transport of individuals from one cell to another is
simulated by redistributing the contents of each cell to a set of
destination cells at a set of times separated by the transport up-
date interval Δt. Using superscript – and + to denote the system
state infinitesimally before and after the update, we can write:

(A4)

(A5)

(A6)

The transfer distributions ΨS
x,y,t and ΨD

x,y,t represent the propor-
tion of individuals in the surface and deep layers of cell y at t
– Δt that are transported to the same layer of cell x by time t.
Thus, using L ∈ [S,D] to denote the layer we define: 

ΨL
x,y,t ≡ Pr{particle at y at time t – Δt

is at x at time t } (A7)
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The following appendix accompanies the article

Table A1. Stage-dependent model parameters. The upper section shows the values for surface developers. The first row defines
the mapping between the stages E to C5 and 57 development classes (implying that each class has width Δq= 0.01754) by giving
the last class in each stage. The dry weights of each stage are given in the second row. The next 2 rows show the food-dependent
mortality thresholds and stage-dependent background mortality rates. The lower section shows diapausing C5s mapped onto 

31 classes of width δq =0.00910 together with their background mortality rate

Stage E N1 N2 N3 N4 N5 N6 C1 C2 C3 C4 C5 

Surface
last class 2 5 8 11 14 17 20 25 30 35 41 57
w C

q (μg) 0.50 0.33 0.49 1.0 1.5 2.1 2.8 4.2 13 23 64 170
FM,q (mgC/m3) 0 0 0 8 8 8 8 8 8 8 8 8
μE

q (d–1 × 100) 18.2 33.6 33.6 14.9 2.6 2.6 2.6 1.5 0.0 2 2 15

Diapause
last class – – – – – – – – – – 31
μD

q (d–1 × 100) – – – – – – – – – – 0.5



Appendix 1 (continued)

We determine this quantity by releasing Ne particles at the
centre of each cell and tracking their position from t – Δt to t,
assuming that the deterministic part of velocity is given by the
OCCAM model (Webb et al. 1998) and the random compo-
nents correspond to a diffusion process with coefficient ΦS or
ΦD as appropriate. The velocities provided by OCCAM are
time-dependent, and so we require to do this for a complete
set of Δt intervals spanning the simulated year. 

Biological updates

We update the state of the surface developer population of
cell x at a set of times {u c

x } related to each other by the
requirement that:

(A8)

where gx
C (τ) represents the development rate of surface

developers in cell x at time τ. The update process requires
that we add the survivors from the last developing class (q =
1) to the surviving adults and then move all other survivors
one class to the right either within the surface population, or
by transfer into the diapausing population. The now empty
first developer class receives the eggs produced by the
adults surviving from the last update. To describe diapause
entry we define an ancillary function θi,x,t which returns the
fraction of individuals who transfer to the first class of the
overwintering stock. In the following equations we use Bx,t to
denote the per capita egg production from the previous
update to the one taking place at time t in cell x. If ξA

x,t

and ξC
i,x,t denote the respective survival of adults and surface

developers then, for compactness, we can write the surviving
developers and adults as: SC

i,x,t ≡ ξC
i,x,tC –

i,x,t and SA
x,t ≡ ξA

x,tA–
x,t .

Thus we have:

(A9)

(A10)

A+
x,t =  (1 – θn,x,t)S

C
n,x,t + SA

x,t (A11)

The diapausing population of cell x is updated, in a similar
way to the surface developers, at a set of times (uD

x ) related to
each other by the requirement that: 

(A12)

where gx
D(τ) represents the development rate of diapausing

individuals in cell x at time τ. The update process requires
that we move survivors from all development classes but the
last, one class to the right. It is assumed that individuals that
have completed their diapause only appear in the surface
waters when the photoperiod is sufficiently large. The last
class thus accumulates surviving individuals until emergence
is cued, at which point they are transferred into the adult
class. To describe this we define an ancillary function Ωx,t

which returns the fraction of individuals that have completed
diapause which rise to the surface. If Px,t is the hours of day-
light at location x and time t, and

(A13)

Let ξj,x,t be the survival of individuals in class j at location x
from the last update to the one at time t, so that SD

j,x,t ≡ ξD
j,x,tD–

j,x,t

is the number of surviving diapausers just before the update.

Thus the diapausers are updated according to:

(A14)

and at the same times:

A+
0,x,t =  A–

0,x,t + Ωx,tD
+
m,x,t (A15)

Update strategy

We only expect to output state variables from the model
immediately after transport updates. Our strategy for updat-
ing the biological system between transport updates is thus to
scan through all the cells, updating each one until the next
unprocessed operation would occur beyond the next transport
update. Once all the cells are thus processed, the transport
update is performed and state variables output before the
process begins again. The process for updating a single cell is
as follows: 
(1) Collect all unprocessed updates from the adult, surface
developer and diapause sequences for this cell: {uA

x }, {uS
x}.

(2) Select the subset of each sequence which falls before the
next transport update; 
(3) Form these into a single ordered sequence and process
them in order of occurrence. 

Development rates

The development rates in the surface and deep layers of cell x
at time t are given by:

(A16)

and

(A17)

where Tx
S(t) and Tx

D(t) respectively represent the in situ tem-
perature in that layer of the cell at time t and Fx(t) represents
the surface layer food concentration at the same time.

Diapause entry

We assume that at each development update a fixed fraction
θD of all individuals with development index in the range
qD → qU will enter diapause:

(A18)

Survival

Using un to denote the nth update time in (uK
x), with K ∈ [A, C,

D] to denote the target population, we write:

ξK
q,x,ui =  exp[–mK

q,x,ui (ui –1)] (A19)

For diapausers, the total mortality rate is simply a constant
background rate:

mD
i,x,t =  μD (A20)

For surface developers we assume that the total mortality con-
sists of a background rate that is an increasing function of
temperature, together with density-dependent and starvation
terms. If Tx

S(t), Wx,t and Fx,t are respectively the surface tem-
perature, Calanus biomass, and food at cell x and time t, we
have:
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Appendix 1 (continued)

mC
i,x,t =  γ(Tx

S(t))μC
i (1 + φWx,t) + μF (A21)

mA
x,t =  γ(T S

x(t))μA(1 + φWx,t) + μF (A22)

where the temperature dependence is given by:

γ(T S
x(t))  =  γ0 + (1 – γ0)(T/Tc)z (A23)

The parameter γ0 is the fraction of the mortality at some char-
acteristic temperature Tc that is experienced at 0°C, and z
determines the non-linearity, and hence how fast the mortal-
ity increases for temperatures above Tc.
The starvation mortality is zero above a stage dependent
threshold, and varies linearly to a maximum (μmax

F ) below that
threshold. The developer thresholds are given in Table A1
and the adult value in Table A2.

(A24)

The total biomass density in cell x is given by the sum over all
developer classes of the number of individuals in each class
multiplied by the dry weight of each individual plus a similar
sum over the adult population, divided by the surface area of
the cell (αx). 

(A25)

Fecundity

Using un in the same way as the previous section, we can
express the per capita egg production from over from the last
update to the one occurring at time t as:

Bx,t =  βx,t(un – un –1) (A26) 

where βx,t is the per capita egg production rate. We model this
rate as a saturating function of food, but where the asymptote
is linearly dependent on temperature:

(A27)

which yields a good fit to the laboratory experiments of Hirche
et al. (1997) with the parameter values given in Table A2. 

Parameters

Table A2 lists the parameter values used. Where published
sources for parameter values exist, these are given in the final
column of the table. Some parameters, such as the transport
update time interval Δt, are either arbitrary or only have a
weak influence on the model results. These are described as
‘chosen’. For the remaining unknown parameters we carried
out an extensive series of model runs and picked values
that were qualitatively judged to yield the most satisfactory
results. These parameters are described as ‘fitted’.

β α α
x

x

x
,

( ) ( )
( ( ))t

T F t
F F th

= +
+

1 2

W w C w At i t
A

t
C
i

i

n

x x x
x

, , , ,= +⎡
⎣⎢

⎤
⎦⎥−

∑1

1α

μF MF t F( ( ), )x =
0 ( )if

μ otmax

F t FM

F
F

FM

x >
−⎡⎣ ⎤⎦1 hherwise

⎧
⎨
⎩

Table A2. Parameter values used in the model. Inc: increment; dev.: development; temp: temperature; mort: mortality; spec: specific; 
wt: weight; max: maximum; min: minimum; coef: coefficient

Parameter Symbol Value Units Source

Physical environment
Ensemble size NE 100 – This study chosen
Surface layer depth zS 20 m This study chosen
Deep layer depth zD,x 100–1500 m Heath et al. (2004)
Surface diffusion ΦS 100 m2 s–1 Gurney et al. (2001)
Deep diffusion ΦD 50 m2 s–1 This study chosen
Transport update inc. Δt 7 d Gurney et al. (2001)

Surface developers
Dev. increment Δq 0.01754 – Campbell et al. (2001)
Dev. rate scale GC 6.75 × 10–3 d–1 Campbell et al. (2001)
Dev. rate power P 2.05 – Campbell et al. (2001)
Characteristic food FG 29.2 mgC m–3 Campbell et al. (2001)
Dev. rate temp. TG 10.6 deg Campbell et al. (2001)
Nominal mortality μE

q Table 1 d–1 Eiane et al. (2002)
Background/nominal mortality v 0.2 – This study fitted
Stage spec. Dry wt w C

q Table 1 μg Lynch et al. (2001)
Starvation threshold FM,q Table 1 mgC m–3 This study fitted

Adults
Max. fecundity at 0°C α1 12.86 d–1 Hirche et al. (1997)
Fecundity temp. coeff. α1 3.218 d–1 deg–2 Hirche et al. (1997)
Fecundity half saturation food Fh 82.02 mgC m–3 Hirche et al. (1997)
Adult dry weight w A 276 μg Lynch et al. (2001)
Adult mortality μA

y 0.01 d–1 This study fitted
Starvation threshold F A

M 8 mgC m–3 This study fitted

Starvation and density dependent mortality
Max. starvation mortality μmax

F 1 d–1 This study fitted
Density dependence φ 3 × 10–6 d–1m3 μg–1 This study fitted
Fraction background mortality at 0°C γ0 0.65 – This study fitted
Characteristic temp. TC 8 °C This study fitted
Temp. power coeff. z 7 – This study fitted

Diapausers
Diapause entry fraction θD 0.7 – This study fitted
Min. q at diapause entry qD 55Δq – This study chosen
Max. q at diapause entry qD 56Δq – This study chosen
Diapause exit photoperiod PE 12 h This study chosen
Mortality rate μD 0.05 d–1 This study fitted


