<table>
<thead>
<tr>
<th>Compartment name</th>
<th>Parameter (P)</th>
<th>Compart. #</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td></td>
<td>1</td>
<td>1040.0</td>
</tr>
<tr>
<td>GPP</td>
<td></td>
<td>1</td>
<td>437.3</td>
</tr>
<tr>
<td>NPP</td>
<td></td>
<td>1</td>
<td>247.3</td>
</tr>
<tr>
<td>Respiration</td>
<td></td>
<td>1</td>
<td>190.1</td>
</tr>
<tr>
<td>Microphytobiont</td>
<td>Biomass</td>
<td>2</td>
<td>130.0</td>
</tr>
<tr>
<td>GPP</td>
<td></td>
<td>2</td>
<td>98.6</td>
</tr>
<tr>
<td>NPP</td>
<td></td>
<td>2</td>
<td>64.4</td>
</tr>
<tr>
<td>Respiration</td>
<td></td>
<td>2</td>
<td>34.2</td>
</tr>
<tr>
<td>Macrophytobiont</td>
<td>Biomass</td>
<td>3</td>
<td>146236.0</td>
</tr>
<tr>
<td>GPP</td>
<td></td>
<td>3</td>
<td>5279.1</td>
</tr>
<tr>
<td>NPP</td>
<td></td>
<td>3</td>
<td>3933.8</td>
</tr>
<tr>
<td>Respiration</td>
<td></td>
<td>3</td>
<td>1345.4</td>
</tr>
<tr>
<td>Freeliving bacteria</td>
<td>Biomass</td>
<td>4</td>
<td>9.8</td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td>4</td>
<td>76.1</td>
</tr>
<tr>
<td>Respiration</td>
<td></td>
<td>4</td>
<td>70.5</td>
</tr>
<tr>
<td>Egestion</td>
<td></td>
<td>4</td>
<td>5.6</td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
<td>4</td>
<td>152.2</td>
</tr>
<tr>
<td>Zooplankton</td>
<td>Biomass</td>
<td>5</td>
<td>11.2</td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>Respiration</td>
<td></td>
<td>5</td>
<td>0.4</td>
</tr>
<tr>
<td>Egestion</td>
<td></td>
<td>5</td>
<td>2.7</td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
<td>5</td>
<td>4.6</td>
</tr>
<tr>
<td>Hydrobia ulvae</td>
<td>Biomass</td>
<td>6</td>
<td>40.6</td>
</tr>
<tr>
<td>GPP</td>
<td></td>
<td>6</td>
<td>0.12</td>
</tr>
<tr>
<td>NPP</td>
<td></td>
<td>6</td>
<td>3933.8</td>
</tr>
<tr>
<td>Respiration</td>
<td></td>
<td>6</td>
<td>0.3</td>
</tr>
<tr>
<td>Egestion</td>
<td></td>
<td>6</td>
<td>1.18</td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
<td>6</td>
<td>1.6</td>
</tr>
<tr>
<td>Littorina littorea</td>
<td>Biomass</td>
<td>7</td>
<td>19337.2</td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td>7</td>
<td>25.4</td>
</tr>
<tr>
<td>Respiration</td>
<td></td>
<td>7</td>
<td>139.9</td>
</tr>
<tr>
<td>Egestion</td>
<td></td>
<td>7</td>
<td>239.2</td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
<td>7</td>
<td>404.5</td>
</tr>
<tr>
<td>Arenicola marina</td>
<td>Biomass</td>
<td>8</td>
<td>5330.2</td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td>8</td>
<td>25.4</td>
</tr>
<tr>
<td>Respiration</td>
<td></td>
<td>8</td>
<td>139.9</td>
</tr>
<tr>
<td>Egestion</td>
<td></td>
<td>8</td>
<td>239.2</td>
</tr>
<tr>
<td>Consumption</td>
<td></td>
<td>8</td>
<td>404.5</td>
</tr>
</tbody>
</table>

The following appendix accompanies the article

Appendix 1. Biomass and energetics of all compartments in flow networks of the 9 intertidal subsystems of the Sylt-Rømø Bight. Biomass and standing stocks in mg C m–2; GPP, NPP, C, P, R, & E in mg C m–2 d–1. The effective trophic level position of each component is given in brackets below the compartment number.

The following appendix accompanies the article

Appendix 1. Biomass and energetics of all compartments in flow networks of the 9 intertidal subsystems of the Sylt-Rømø Bight. Biomass and standing stocks in mg C m–2; GPP, NPP, C, P, R, & E in mg C m–2 d–1. The effective trophic level position of each component is given in brackets below the compartment number.

Trophic dynamics of eight intertidal communities of the Sylt-Rømø Bight ecosystem.

Dan Baird, Harald Asmus, *Ragnhild Asmus*
<table>
<thead>
<tr>
<th>Species</th>
<th>Biomass</th>
<th>Production</th>
<th>Respiration</th>
<th>Egestion</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoloplos intertidalis</td>
<td>1230</td>
<td>9</td>
<td>12</td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td>Capitellidae</td>
<td>175</td>
<td>15</td>
<td>5</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>757</td>
<td>25</td>
<td>10</td>
<td>35</td>
<td>70</td>
</tr>
<tr>
<td>Heteromastus</td>
<td>945</td>
<td>10</td>
<td>5</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Lanice conchilega</td>
<td>340</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Nereis diversicolor</td>
<td>1090</td>
<td>10</td>
<td>5</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Pygospio elegans</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Corophium arenarium</td>
<td>960</td>
<td>10</td>
<td>5</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Corophium volutator</td>
<td>2620</td>
<td>10</td>
<td>5</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Gammarus species</td>
<td>840</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Mytilus edulis</td>
<td>7617</td>
<td>10</td>
<td>5</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Cerastoderma</td>
<td>1856</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Species</td>
<td>Biomass</td>
<td>Production</td>
<td>Respiration</td>
<td>Egestion</td>
<td>Consumption</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Mya arenaria</td>
<td>21</td>
<td>21 21</td>
<td>21 21</td>
<td>21 21</td>
<td>21 21 21</td>
</tr>
<tr>
<td>Small polychaetes</td>
<td>22 22 22</td>
</tr>
<tr>
<td>Tharyx killariensis</td>
<td>23 23 23 23</td>
</tr>
<tr>
<td>Small Crustacea</td>
<td>26 26 26 26 26 26</td>
</tr>
<tr>
<td>Neophtys</td>
<td>29 29 29 29 29 29</td>
</tr>
<tr>
<td>P. microphys</td>
<td>30 30 30 30 30 30</td>
</tr>
<tr>
<td>P. minutus</td>
<td>31 31 31 31 31 31</td>
</tr>
<tr>
<td>P. pichons</td>
<td>32 32 32 32 32 32</td>
</tr>
<tr>
<td>Species</td>
<td>Biomass</td>
<td>Production</td>
<td>Respiration</td>
<td>Egestion</td>
<td>Consumption</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>P. flesus (flounder)</td>
<td>33</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>Clupea harengus</td>
<td>0.07</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0002</td>
</tr>
<tr>
<td>M. merlangus (whiting)</td>
<td>0.56</td>
<td>0.003</td>
<td>0.008</td>
<td>0.015</td>
<td>0.026</td>
</tr>
<tr>
<td>G. morhua (cob)</td>
<td>7.5</td>
<td>0.04</td>
<td>0.12</td>
<td>0.07</td>
<td>0.23</td>
</tr>
<tr>
<td>M. scorpio</td>
<td>7.5</td>
<td>0.04</td>
<td>0.12</td>
<td>0.07</td>
<td>0.23</td>
</tr>
<tr>
<td>Shelduck Tadorna tadorna</td>
<td>625.21</td>
<td>1.75</td>
<td>0.67</td>
<td>0.17</td>
<td>0.87</td>
</tr>
<tr>
<td>Eider Somateria mollissima</td>
<td>9000</td>
<td>24.45</td>
<td>953.51</td>
<td>244.49</td>
<td>1222.45</td>
</tr>
<tr>
<td>Oystercatcher Haematopus ostralegus</td>
<td>2043.75</td>
<td>7.00</td>
<td>273.15</td>
<td>70.04</td>
<td>350.19</td>
</tr>
<tr>
<td>Avocet Recurvirostra avosetta</td>
<td>31.56</td>
<td>0.35</td>
<td>5.26</td>
<td>1.40</td>
<td>7.01</td>
</tr>
<tr>
<td>Golden plover Pluvialis apricaria</td>
<td>3.5</td>
<td>0.01</td>
<td>0.30</td>
<td>0.08</td>
<td>0.38</td>
</tr>
<tr>
<td>Knot Calidris canutus</td>
<td>2.95</td>
<td>0.01</td>
<td>0.58</td>
<td>0.15</td>
<td>0.74</td>
</tr>
<tr>
<td>Dunlin Calidris alpina</td>
<td>5.02</td>
<td>0.02</td>
<td>0.64</td>
<td>0.16</td>
<td>0.82</td>
</tr>
<tr>
<td>Animal Type</td>
<td>Biomass</td>
<td>Production (kg)</td>
<td>Respiration (kg)</td>
<td>Egestion (kg)</td>
<td>Consumption (kg)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------</td>
<td>----------------</td>
<td>------------------</td>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Curlew</td>
<td>5.35</td>
<td>3.16</td>
<td>0.33</td>
<td>0.08</td>
<td>0.42</td>
</tr>
<tr>
<td>Black-headed gull</td>
<td>2.29</td>
<td>3.14</td>
<td>0.25</td>
<td>0.06</td>
<td>0.32</td>
</tr>
<tr>
<td>Common gull</td>
<td>2.4</td>
<td>3.16</td>
<td>0.24</td>
<td>0.06</td>
<td>0.31</td>
</tr>
<tr>
<td>Herring gull</td>
<td>2887.5</td>
<td>3.03</td>
<td>225.00</td>
<td>90.00</td>
<td>292.50</td>
</tr>
<tr>
<td>Other birds</td>
<td>6.75</td>
<td>3.15</td>
<td>0.50</td>
<td>0.14</td>
<td>0.65</td>
</tr>
<tr>
<td>Mallard</td>
<td>69.47</td>
<td>0.09</td>
<td>2.91</td>
<td>1.74</td>
<td>4.74</td>
</tr>
<tr>
<td>Pintail</td>
<td>2.6</td>
<td>0.01</td>
<td>0.21</td>
<td>0.12</td>
<td>0.34</td>
</tr>
<tr>
<td>Widgeon</td>
<td>330.35</td>
<td>2</td>
<td>21.91</td>
<td>12.17</td>
<td>38.08</td>
</tr>
<tr>
<td>Brent goose</td>
<td>86.92</td>
<td>0</td>
<td>4.35</td>
<td>2.43</td>
<td>6.95</td>
</tr>
<tr>
<td>Sediment bacteria</td>
<td>625.0</td>
<td>2</td>
<td>192.6</td>
<td>67.4</td>
<td>381.5</td>
</tr>
<tr>
<td>Meiobenthos</td>
<td>500.0</td>
<td>2</td>
<td>41.7</td>
<td>19.0</td>
<td>71.7</td>
</tr>
<tr>
<td>Suspended POC</td>
<td>167.4</td>
<td>2</td>
<td>28</td>
<td>14.0</td>
<td>42.0</td>
</tr>
<tr>
<td>Sediment POC</td>
<td>19000</td>
<td>2</td>
<td>1</td>
<td>1000.0</td>
<td>19000</td>
</tr>
<tr>
<td>DOC</td>
<td>62</td>
<td>2</td>
<td>2</td>
<td>1000.0</td>
<td>62</td>
</tr>
</tbody>
</table>