Spatial distributions of groundfish in the northern Bering Sea in relation to environmental variation

Xuehua Cui1,*, Jacqueline M. Grebmeier2, Lee W. Cooper2, James R. Lovvorn3, Christopher A. North4, William L. Seaver5, Jason M. Kolts4

1Department of Ecology and Evolutionary Biology, University of Tennessee, 569 Dabney Hall, 1416 Circle Drive, Knoxville, Tennessee 37996, USA
2Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, 1 Williams Street, PO Box 38, Solomons, Maryland 20688, USA
3Department of Zoology and Center for Ecology, Southern Illinois University, 1125 Lincoln Drive, MC6501, Carbondale, Illinois 62901, USA
4Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 1000 E University Avenue, Laramie, Wyoming 82071, USA
5Department of Statistics, Operation, and Management Science, University of Tennessee, 331 SMC, 916 Volunteer Boulevard, Knoxville, Tennessee 37996, USA

Email: cuixuehua@gmail.com

Marine Ecology Progress Series 393:147–160 (2009)
Fig. S1. Spatial pattern of selected environmental factors in 2006 (left side charts a1–e1) and 2007 (right side charts a2–e2) sampling seasons. Bottom temperature: bottom water temperature (°C); Bottom salinity: bottom water salinity; Int Chl a: integrated water column chlorophyll a (mg m⁻²); Sediment TOC: total organic carbon in surface sediments (%); Sediment grain size: surface sediment grain size (phi)
Fig. S2. Spatial patterns of dominant demersal fish by abundance in 2006 (left side charts a1–e1) and 2007 (right side charts a2–e2). Data from the otter trawl in 2006 were adjusted to be comparable with data from the beam trawl in 2007 (see Fig. 2). Cold color (blue) represents fish abundance equal to or close to zero, warm color (red) is the highest value. Scales on right are number of fish km$^{-2}$.