The following supplement accompanies the article

Patterns and processes of compositional change in a California epibenthic community

Cascade J. B. Sorte1,2,3,*, John J. Stachowicz1,2

1Department of Evolution and Ecology, University of California, Davis, California 95616, USA
2Bodega Marine Laboratory, University of California, Bodega Bay, California 94923, USA
3Present address: Department of Environmental, Earth and Ocean Sciences, University of Massachusetts, Boston, Massachusetts 02125, USA

*Email: cjsorte@ucdavis.edu

Marine Ecology Progress Series 435:63–74 (2011)

SUPPLEMENT. Expanded methodological and statistical details of studies addressing the patterns and processes of compositional change in a California epibenthic community.

Table S1. Measurement intervals for recruitment data collected in Bodega Harbor (CA) in 2005–09
Table S2. Structural equation model results from 4 alternate models of the effects of temperature on the recruitment of 15 epibenthic species, and of all natives, all non-natives, and all species. Given for each model is the recruitment transformation (Trans.), R^2 for recruitment, and unstandardized path coefficient between temperature (T), chl a (C), and/or salinity (S) and recruitment (R), along with the coefficient p values.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All species</td>
<td>All</td>
<td>Sqrt</td>
<td>0.280</td>
<td>0.603</td>
<td><0.001</td>
<td>0.580</td>
<td>0.052</td>
</tr>
<tr>
<td>All native species</td>
<td>Sqrt</td>
<td>0.090</td>
<td>0.323</td>
<td>0.004</td>
<td>0.438</td>
<td>0.031</td>
<td>0.270</td>
</tr>
<tr>
<td>All non-native species</td>
<td>Sqrt</td>
<td>0.432</td>
<td>0.498</td>
<td><0.001</td>
<td>0.686</td>
<td>0.057</td>
<td><0.001</td>
</tr>
</tbody>
</table>

- **Botrylloides violaceus**
- **Bugula neritina**
- **Chromis sp.**
- **Watersipora subtorquata**
- **Bugula californica**
- **Botryllus schlosseri**
- **Diplosoma listerianum**
- **Didemnum vexillum**
- **Distaplia occidentalis**
- **Metridium senile**
- **Spirorbis sp.**
- **Barnacles**
- **Ophelia spp.**
- **Sponges**
Fig. S1. Abundance (percent cover ± SE) of non-native and native species after 7 mo of community development on settlement plates ($N = 4$) deployed at Mason’s Marina (Boyd’s (1972) study site) and Spud Point Marina (study site for contemporary surveys). At each site, 100 cm2 PVC plastic plates were deployed from June 2006 through January 2007. There was no difference in non-native (t-test $p = 0.40$) or native (t-test $p = 0.76$) species proportions between the 2 locations, which are <300 m apart in Bodega Harbor.
Fig. S2. Abundance (percent cover ± SE) of (A) non-native and native species, and (B) individual species after 3 mo of community development on 100 cm2 settlement plates ($N = 4$) composed of 2 substrata: masonite and PVC plastic. There was no difference between substrata in species composition (see Methods) or in abundances of native and non-native species (t-test $p > 0.2$). Furthermore, natives tended to be more abundant on PVC, which contrasts with the expected pattern of abundance if their observed decline was driven by differential recruitment between settlement substrata.
Fig. S3. Sampling timelines for recruitment, temperature, and water (for salinity and chl \(a\) measurements) from May 2005 to September 2009