Physical and biological factors affect the vertical distribution of larvae of benthic gastropods in a shallow embayment

Michelle J. Lloyd^{1,*}, Anna Metaxas¹, Brad deYoung²

¹Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 ²Department of Physics and Physical Oceanography, Memorial University, St. John's, Newfoundland, Canada A1B 3X7

*Email: michelle.lloyd@dal.ca

Marine Ecology Progress Series 464: 135–151 (2012)

Supplement 1. Autocorrelation of each gastropod taxon

Calculation of mean depth distribution (MDD)

The vertical distribution for each taxon (*Margarites* spp., *Crepidula* spp., *Astyris lunata*, *Diaphana minuta*, Littorinimorpha, *Arrhoges occidentalis*, *Ilyanassa* spp., *Bittiolum alternatum*, Nudibranchia) at each sampling time was characterized using mean depth distribution (MDD) calculated for each sampling time *j* as the weighted average:

$$MDD_j = \frac{1}{N_j} \sum_{i=1}^n z_i n_{ij}$$

where z_i = mean depth of interval *i*, n_{ij} = number of larvae collected at depth *i* at time *j*, and N_j = total number of larvae sampled at time *j* (Tapia et al. 2010). For each larval taxon, the MDD reflects the larval concentration at the mean depth of any given profile. The time series of MDD for each taxon (*Margarites* spp., *Crepidula* spp., *Astyris lunata*, *Diaphana minuta*, Littorinimorpha, *Arrhoges occidentalis*, *Ilyanassa* spp., *Bittiolum alternatum*, Nudibranchia) during each sampling period (full moon, quarter moon) was used for autocorrelation analysis.

Table S1. Autocorrelation explaining the similarity between the mean depth distribution (MDD) of each taxon (*Margarites* spp., *Crepidula* spp., *Astyris lunata*, *Diaphana minuta*, Littorinimorpha, *Arrhoges occidentalis*, *Ilyanassa* spp., *Bittiolum alternatum*, Nudibranchia) as a function of the time separation between them. Plankton were sampled at a 2-h temporal frequency, over a 36- and 26-h period, during a spring (full moon: 6-7 Aug 2009) and neap (quarter moon: 12-13 Aug 2009) tide, respectively. Bold values indicate significantly correlated variables (p < 0.05); r = correlation coefficient and p = p-value

		Cross-correlations								
Taxon		Full Moon						Quarter Moon		
	Time Lag	0-h	2-h	4-h	6-h	8-h	0-h	2-h	4-h	
Managuitas app	r	1.000	0.634	0.353	0.150	0.002	1.000	0.376	0.080	
<i>margarnes</i> spp.	р	<0.001	0.006	0.180	0.593	0.996	<0.001	0.228	0.815	
Crepidula spp.	r	1.000	0.224	0.024	0.346	-0.073	1.000	0.452	-0.025	
	р	<0.001	0.388	0.931	0.207	0.805	<0.001	0.140	0.941	
Astyris lunata	r	1.000	0.266	0.375	0.255	0.387	1.000	0.591	0.104	
	р	<0.001	0.302	0.153	0.359	0.172	<0.001	0.043	0.760	
Dianhana minuta	r	1.000	0.290	-0.097	-0.139	-0.197	1.000	-0.064	-0.258	
	р	<0.001	0.260	0.721	0.621	0.499	<0.001	0.844	0.444	
Littoniningombo	r	1.000	0.241	0.022	0.084	-0.290	1.000	-0.082	-0.027	
Littorininorpha	р	<0.001	0.351	0.936	0.766	0.314	<0.001	0.800	0.938	
Arrhoges	r	1.000	-0.157	-0.253	-0.103	-0.072	1.000	0.561	-0.221	
occidentalis	р	<0.001	0.547	0.344	0.714	0.806	<0.001	0.058	0.513	
11	r	1.000	0.226	-0.318	-0.108	-0.238	1.000	0.688	0.173	
<i>Tiyanassa</i> spp.	р	<0.001	0.383	0.231	0.701	0.413	<0.001	0.013	0.612	
Bittiolum	r	1.000	-0.083	-0.450	-0.158	0.111	1.000	0.417	-0.294	
alternatum	p	<0.001	0.751	0.080	0.573	0.705	<0.001	0.178	0.381	
Nudibranabia	r	1.000	0.712	0.582	0.390	0.172	1.000	0.188	-0.259	
nucioralicilla	р	<0.001	0.001	0.018	0.151	0.556	<0.001	0.558	0.442	

Supplement 2. Correlations of physical variables

Table S2. Pearson correlation coefficients for all pairs of physical variables: z = depth (m) T = temperature (°C), S = salinity, $\sigma_t = \text{density (kg m}^{-3})$, Fl = fluorescence, w = vertical velocity (cm s⁻¹), $v = \text{North-south velocity (cm s}^{-1})$, $u = \text{East-West velocity (cm s}^{-1})$, and Ri = Richardson number (stable: Ri > 0.25 or unstable: Ri < 0.25). Bold values indicate significantly correlated variables; n = sample size

		z	Т	S	σ_t	Fl	w	v	и	Ri
	r	1	-0.927	0.797	0.926	0.137	-0.141	-0.011	0.107	0.396
z.	р		<0.001	<0.001	<0.001	0.172	0.079	0.896	0.185	<0.001
	n	186	163	116	116	101	155	155	155	186
	r		1	-0.884	-0.992	0.124	0.132	0.017	-0.167	-0.360
Т	р	_		<0.001	<0.001	0.218	0.123	0.848	0.051	<0.001
	n		163	116	116	101	137	137	137	163
	r			1	0.931	-0.335	0.004	0.104	0.082	0.275
S	р	-	-		<0.001	0.002	0.965	0.307	0.424	0.003
	n			116	116	83	98	98	98	116
	r				1	-0.230	-0.079	-0.051	0.087	0.353
D	р	_	_	_		0.037	0.438	0.619	0.395	<0.001
	n				116	83	98	98	98	116
	r					1	-0.092	-0.032	0.077	0.211
F	р	-	-	-	-		0.402	0.770	0.482	0.034
	n					101	85	85	85	101
	r						1	0.326	-0.350	-0.148
w	р	—	-	-	-	-		<0.001	<0.001	0.067
	n						155	155	155	155
	r							1	-0.068	-0.061
v	р	—	-	-	-	-	-		0.398	0.450
	n							155	155	155
	r								1	0.046
и	р	—	-	-	-	-	-	-		0.566
	n								155	155
	r									1
	р	—	-	—	-	-	-	—	-	
	n									186

Supplement 3. Water column instabilities

Richard number calculation and statistical analysis

The Richardson number for each sampling time was calculated as

$$Ri = \frac{N^2}{\left(\frac{\partial U}{\partial z}\right)^2}$$

where

$$\frac{\partial U}{\partial z} = \left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2$$

 $[N^2 =$ buoyancy frequency, z = depth, u = North-South velocity, v = East-West velocity, U = scale for horizontal velocity]. To calculate density, the 'polyfit' function in Matlab 7.1 (The Mathworks Co.) was used to determine the relationship between temperature and salinity from the CTD casts; density was extrapolated from the thermistor data. Student's t-test was used to examine the effect of Richardson number (stable: Ri > 0.25 or unstable: Ri < 0.25) on the normalized abundance of each gastropod taxon.

Taxon	Unstable		Stable			t-test	Conclusions	
Taxon	Mean	SD	Mean	SD	t	df	р	Conclusions
Margarites spp.	-0.526	0.253	0.131	1.072	-6.755	183.8	<0.001	Unstable < Stable
Crepidula spp.	-0.224	0.456	0.056	1.088	-2.401	141.2	0.018	Unstable = Stable
Astyris lunata	0.088	0.880	-0.022	1.029	0.654	62.82	0.516	Unstable = Stable
Diaphana minuta	-0.175	0.510	0.043	1.085	-1.787	124.2	0.076	Unstable = Stable
Littorinimorpha	-0.540	0.136	0.134	1.074	-7.427	164.9	<0.001	Unstable < Stable
Arrhoges occidentalis	0.028	0.818	-0.007	1.043	0.220	68.24	0.827	Unstable = Stable
Ilyanassa spp.	0.274	1.059	-0.068	0.977	1.783	52.25	0.080	Unstable = Stable
Bittiolum alternatum	0.308	1.142	-0.077	0.950	1.893	49.08	0.064	Unstable = Stable
Nudibranchia	-0.178	0.014	0.044	1.114	-2.438	148.2	0.016	Unstable = Stable

Table S3. Student's t-test examining the effect of Richardson number (unstable: Ri < 0.25, stable: Ri > 0.25) on the normalized abundance for all gastropod taxa (p < 0.01, indicated in bold)