Seasonal and spatial variation in the energetics of the invasive clam *Corbula amurensis* in the upper San Francisco Estuary

Nathan A. Miller¹,*, Jonathon H. Stillman¹,²

¹Romberg Tiburon Center, San Francisco State University, 3150 Paradise Drive, Tiburon, California 94920, USA
²Department of Integrative Biology, University of California, Berkeley, 1005 Valley Life Sciences, Bldg #3140, Berkeley, California 94720-2140, USA

*Email: namiller@sfsu.edu

Marine Ecology Progress Series 476: 129–139 (2013)

Supplement. The figures included in this supplement show the more detailed, site-specific relationships between temperature and metabolic rate, salinity and metabolic rate, and chlorophyll *a* concentration and metabolic rate. These data were mentioned, but not presented, in the paper.
Fig. S1. Clam *Corbula amurensis* metabolic rates (A) immediately following collection from the field (Day 1) and (B) for the same clams after being held unfed in the laboratory for 1 day (Day 2) as a function of bottom water temperature at the time of collection, grouped by collection site and color-coded to reflect the bottom water salinity at the time of collection. Points have been jittered 0.1 units to aid in visualization.
Fig. S2. Clam *Corbula amurensis* metabolic rates on (A) Day 1 and (B) Day 2 (see Fig. S1 for definition) as a function of bottom water salinity at the time of collection, grouped by collection site and color-coded to reflect bottom water temperature at time of collection. Points have been jittered 0.1 units to aid in visualization.
Fig. S3. Clam *Corbula amurensis* metabolic rates on (A) Day 1 and (B) Day 2 (see Fig. S1 for definition) as a function of bottom water chlorophyll *a* concentration for all collection sites combined. Points are colored to reflect sampling date.