Sea turtle population structure and connections between oceanic and neritic foraging areas in the Atlantic revealed through trace elements

Melania C. López-Castro1,*, Karen A. Bjorndal1, George D. Kamenov2, Rosana Zenil-Ferguson3, Alan B. Bolten1

1Archie Carr Center for Sea Turtle Research and Department of Biology, University of Florida, PO Box 118525, Gainesville, Florida 32611, USA
2Department of Geological Sciences, University of Florida, PO Box 112120, Gainesville, Florida 32611, USA
3Department of Biology, University of Florida, PO Box 118525, Gainesville, Florida 32611, USA

*Email: mlopezcast@ufl.edu


Supplement. Bi-dimensional scatterplots with the 95% credible intervals for each of the clusters suggested by the model-based cluster analysis of the trace elements in the scute of sea turtles in the Atlantic Ocean.

Fig. S1. Paired bi-plots with 95% credible intervals of the 6 clusters formed with the 4 most informative trace elements suggested by the model-based cluster analysis. Cluster 3 is defined by high concentration and large variation of titanium and zirconium; Cluster 5 is defined by high concentration and large variation of chromium; Cluster 6 is defined by a somewhat high concentration and large variation of barium. Cluster 2 has high concentration and low variation of titanium and barium. Clusters 2 and 4 have low concentrations and low variation of the 4 elements which makes them indistinguishable in this graph.
Fig. S2. Biplot of chromium and barium, the 2 elements that best define Clusters (CL) 1 and 4, showing the separation of these clusters. Concentrations of these elements is low and significantly different. This graph is a close up of the graph in column 4, row 2 of Fig. S1 and is only showing 2 of the 6 clusters. Note the change of scale.

Fig. S3. Biplot of titanium and barium, the 2 elements that best define Clusters 2 and 6, showing the separation of these clusters. Concentrations of barium and titanium are significantly different between these 2 clusters. This graph is a close up of the graph in column 4, row 1 of Fig. S1 and is only showing 2 of the 6 clusters. Note the change of scale.
Fig. S4. Biplot of chromium and zirconium, the 2 elements that best define Clusters 3 and 5, showing the separation of these clusters. Concentrations of chromium and zirconium are significantly different between these clusters. This graph is a close up of the graph in column 3, row 2 of Fig. S1 and is only showing 2 of the 6 clusters. Note the change of scale.