Spatial and temporal heterogeneity in the distribution of an Antarctic amphipod and relationship with the sediment

Helena P. Baird^{1,2,*}, Jonathan S. Stark¹

¹Terrestrial and Nearshore Ecosystems Theme, Australian Antarctic Division, Kingston, Tasmania 7050, Australia ²Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia

Corresponding author: hpbaird@utas.edu.au

Marine Ecology Progress Series 502:169–183

Supplement. Additional information on environmental variables used in the study and relationships with *Orchomenella franklini* abundance at Casey and Davis

Table S1. Orchomenella frankl	ini. Sediment parameters	used to analyse distribution
-------------------------------	--------------------------	------------------------------

		Description	
	TOC	Total organic carbon as % total sediment mass	
Grain size parameters	Clay/silt	Proportion sediment grains <63 μm	
	Very fine sand	Proportion sediment grains 63–125 µm	
	Fine sand	Proportion sediment grains 125–250 µm	
	Medium sand	Proportion sediment grains 250–500 µm	
ize	Coarse sand	Proportion sediment grains 500-1 mm	
uin s	Very coarse sand	Proportion sediment grains 1–2 mm	
Gra	Other sediments	Proportion sediment grains >2 mm	
	Mean grain size	Mean size of sediment grains, measured in μm	
Al As Ba Cd Co	Al	Aluminium	
	As	Arsenic	
	Ba	Barium	
	Cd	Cadmium	
	Со	Cobalt	
rs*	Cr	Chromium	
Γrace element parameters*	Cu	Copper	
ran	Fe	Iron	
t pa	Mg	Magnesium	
nen	Mo	Molybdenum	
eleı	Ni	Nickel	
ace	Pb	Lead	
Tr	S	Sulphur	
	Sb	Antimony	
	Sn	Tin	
	Sr	Strontium	
	V	Vanadium	
	Zn	Zinc	

*All trace elements were measured as mg kg^{-1} present in the <2 mm fraction of sediment

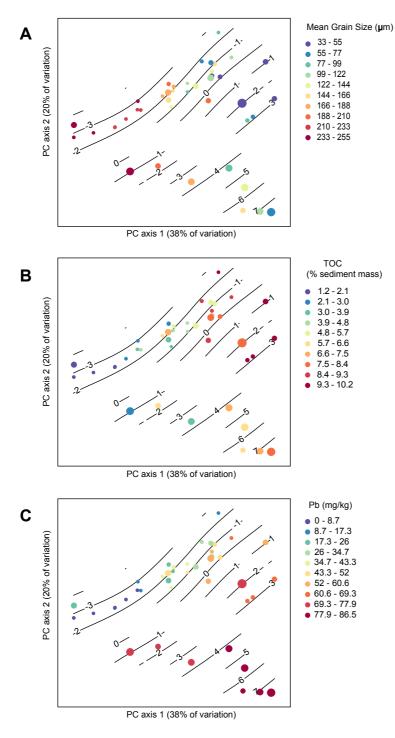


Fig. S1. Principal component analysis ordination of all sediment parameters for Casey. The first 2 principal components account for 58% of environmental variation. Points are scaled by the mean abundance of *Orchomenella franklini*, and contours represent predictions of relative abundance based on generalised additive modelling (GAM) of square-root-transformed abundance data. GAM explains 43% of the variance in abundance. Points are coloured by (a) mean grain size, (b) total organic carbon (TOC) content and (c) lead concentration (all parameters increase from cool to warm colours). Maximum abundance values are predicted for sediments with moderately high TOC and concentrations of lead in the upper ranges for the region (correlated with several other metals and TOC; see text). There is no clear correlation with grain size, although low abundances are generally predicted for the highest grain sizes. PC: principal component

Fig. S2. Principal component analysis ordination of all sediment parameters for Davis. The first 2 principal components account for 67% of environmental variation. Points are scaled by the mean abundance of *Orchomenella franklini*, and contours represent predictions of relative abundance based on generalised additive modelling (GAM) of square-root-transformed abundance data. GAM explains 49% of the variance in abundance. Points are coloured by (a) mean grain size, (b) total organic carbon (TOC) content and (c) lead concentration (all parameters increase from cool to warm colours). Maximum abundance values are predicted for sediments with low grain sizes, moderate to high TOC and concentrations of lead in the upper ranges for the region (although given the range of lead concentration is very narrow, this likely reflects a correlation with TOC or grains size; see text). PC: principal component