The following supplement accompanies the article

Potential for landscape-scale positive interactions among tropical marine ecosystems

L. G. Gillis^{1,*}, T. J. Bouma¹, C. G. Jones², M. M. van Katwijk³, I. Nagelkerken⁴, C. J. L. Jeuken⁵, P. M. J. Herman¹, A. D. Ziegler⁶

¹Department of Spatial Ecology, Royal Netherlands Institute for Sea Research (NIOZ), The Netherlands
²Cary Institute of Ecosystem Studies, PO Box AB, Millbrook, New York, USA
³Department of Environmental Science, Radboud University Nijmegen, The Netherlands
⁴School of Earth and Environmental Sciences, The University of Adelaide, Australia
⁵Deltares/Delft Hydraulics, Marine and Coastal Systems/Hydraulic Engineering, Delft, The Netherlands
⁶Geography Department, National University of Singapore, Singapore

*Email: lucygwen.gillis@nioz.nl

Marine Ecology Progress Series 503:289-303 (2014)

Supplement. Literature review of data showing fluxes (wave height, sediment and nutrients) between mangrove forests, seagrass beds and coral reefs

Wave heights

Table S1. Reports of field wave heights at (A) mangrove forests (from 1990 to 2011), (B) seagrass beds (from 2001 to 2012) and (C) coral reefs (from 1975 to 2012). The studies are in ascending order according to wave height (m). nd: no available data, NA: not applicable. The mean wave height across studies can be seen in Table 1 in the main article

Ecosystem and location	Ecosystem attributes	Depth (m)	Wave height (m)	Area of ecosystem (km ²)	State	Reference
(A) Mangrove forest						
Hinchinbrook Channel, Australia	nd	NA	0.2	164	Modified	Wolanski et al. (1990)
Flume	nd	NA	0.4	nd	nd	Suzuki et al. (2012)
Can Gio mangrove forest, Vietnam	nd	NA	0.4	757	nd	Phuoc & Massel (2006)
Tong King Delta, Vietnam	nd	NA	1	4.5	Re-planted	Mazda et al. (1997)
(B) Seagrass bed						
Whangapoua Estuary, New Zealand	Zostera sp.	1.2	0.02-0.1	>0.1	Fragmented	Bryan et al. (2007)
Duck Point Cove, USA	<i>Ruppia</i> sp.	1	0.1	nd	Recovered	Newell & Koch (2004)
Santa Rosa Island, USA	<i>Thalassia</i> sp.	1.5	0.1	nd	Stable	Bradley & Houser (2009)
South Bay, USA	Zostera sp.	1.4-2.3	0.2	0.0007	nd	Hansen & Reidenbach (2012)
Cala Millor, Majorca Island	Posidonia sp.	6-35	0.2-0.4	1.2	nd	Infantes et al. (2009)
Naruto, Japan	Zostera sp.	nd	2	nd	nd	Cited by Koch (2001)
(C) Coral Reef						
Hawaii, USA	Fringing reef	0.05	0.09	nd	nd	Filipot & Cheung (2012)
St. Croix, USA	Back reef	2	0.1	nd	nd	Roberts et al. (1988)
St. Croix, USA	Reef crest	3	0.1	nd	nd	Roberts et al. (1988)
St. Croix, USA	Reef crest	3	0.3	nd	nd	Roberts et al. (1988)
St. Croix, USA	Fore reef	5	0.5	nd	nd	Lugo-Fernández et al. (1998)
Torres Strait, Australia	Fore reef	2.5	0.5	nd	nd	Brander et al. (2004)
Margarita reef, Puerto Rico	Reef crest	0.3-6	0.6-1.5	nd	nd	Lugo-Fernández et al. (1994)
Grand Cayman Island, Barbados	Reef shelf	13	1	nd	nd	Roberts (1975)
Great Corn Island, Nicaragua	Reef crest	0.5	1	nd	nd	Suhayda & Roberts (1977)
Guam, USA	Reef edge	8	4	nd	nd	Pequignet et al. (2011)

Table S2. Studies showing a percentage reduction in wave height travelling across (A) coral reefs and (B) seagrass beds from ocean to shore. $H_{(enter)}$ denotes the wave height at the edge of the seaward side of the ecosystem. $H_{(exit)}$ represents the wave height after passing through the coral reef or seagrass bed. Reduction (R) (%) is the percentage reduction in the initial wave height after travelling over a given distance of the coral reef or seagrass bed. $H_{(exit)}$ was calculated by $H_{(enter)} - [H_{(enter)} \times (R/100)]$. Export/import ratio gives an inverse wave retention potential of the forest and bed. The studies are in ascending order according to distance (m)

Ecosystem and location	Ecosystem	Distance	Depth	Henter	Hexit	Reduction	Export/Import	Reference	Study
	attributes	(m)	(m)	(m)	(m)	(R) (%)	ratio		
(A) Coral reef									
St. Croix, USA	Back reef	30	2	0.07	0.02	74	0.3	Roberts et al. (1988)	1
St. Croix, USA	Reef crest	45	3	0.1	0.05	56	0.5	Roberts et al. (1988)	2
St. Croix, USA	Reef crest	55	3	0.1	0.07	46	0.7	Roberts et al. (1988)	3
St. Croix, USA	Fore reef	125	5	0.3	0.1	54	0.3	Lugo-Fernández et al. (1998)	4
Great Corn Island, Nicaragua	Reef crest	300	5	1	0.6	40	0.6	Suhayda & Roberts (1977)	5
Grand Cayman Island	Reef crest	400	13	1	0.8	20	0.8	Roberts (1975)	6
Ipan, Guam	Fore reef	500	8	4	0.1	97	0.03	Pequignet et al. (2011)	7
Torres Strait, Australia	Fore reef	556	3	0.5	0.3	58	0.6	Brander et al. (2004)	8
Margarita Reef, Puerto Rico	Reef crest	1000	0.3	1	0.2	72	0.3	Lugo-Fernández et al. (1994)	9
(B) Seagrass bed			Density (shoots m ⁻²)						
Flume	Zostera sp.	1	875	0.04	0.01	81	0.3	Fonseca & Cahalan (1992)	1
Virginia Coast reserve, USA	Zostera sp.	1.4–2.3	560	0.2	0.08	58	0.4	Hansen & Reidenbach (2012)	2
Santa Rosa Island, USA	<i>Thalassia</i> sp.	50	110	0.1	0.07	30	0.7	Bradley & Houser (2009)	3

Sediment

Table S3. Reports of total suspended solid fluxes (g m⁻² d⁻¹) for (A) mangrove forests (from 1990 to 2010), (B) seagrass beds (from 1995 to 2003) and (C) coral reefs (from 1974 to 2004). Mean total suspended solid fluxes (g m⁻² d⁻¹) values across studies can be seen in Table 1 in the main article. The studies are in ascending order according to total suspended solid (TSS) flux values (g m⁻² d⁻¹). *: mean values. nd: no available data

Ecosystem and location	Ecosystem attribute	TSS* (g m ⁻² d ⁻¹)	Area (km ²)	State	Reference
(A) Mangrove forest		· -			
Ngerdorch, Palau	River	0.001	1.5	Developed catchment area	Victor et al. (2004)
Nudgee Creek, Australia	Tidal creek	0.09	~0.8	Extensively modified	Adame et al. (2010)
Bald Hills Creek, Australia	Tidal creek	0.1	0.8	Extensively modified	Adame et al. (2010)
Caboolture River, Australia	River	0.2	2.4	Modified	Adame et al. (2010)
Eprapah Creek, Australia	Tidal creek	0.2	1.3	Modified	Adame et al. (2010)
Tingalpa, Australia	River	0.3	1.3	Extensively modified	Adame et al. (2010)
Ngerikiil, Palau	River	0.5	0.7	Natural, but poor surrounding land	Victor et al. (2004)
-				use	
Mooloolah River, Australia	River	1	0.3	Modified	Adame et al. (2010)
Klong Ngao Estuary, Thailand	Tidal creek	12	11.5	Natural	Wattayakorn et al. (1990)
Pohnpei, Federated States of Micronesia	River dominated	62	~0.4	nd	Victor et al. (2006)
North Coast, Kenya	River	233	17	Moderately and extensively degraded	Kitheka et al. (2002)
Middle Creek, Australia	Tidal creek	675	6.5	Less developed catchment area	Furukawa et al. (1997)
(B) Seagrass bed					
China Sea, Hong Kong	Zostera sp.	0.003-0.02	nd	nd	Lee (1997)
Bay of Calvi, Mediterranean	Posidonia sp.	3.6	nd	nd	Dauby et al. (1995)
Silaqui, Pislatan, St. Barbara,	Enhalus sp.	19-175	nd	nd	Gacia et al. (2003)
Buenavista, Umalagan,	Cymodocea sp.				
Philippines	Halodule sp. &				
	Thalassia sp.				
Fanals point, Spain	Posidonia sp.	1.5-500	nd	nd	Gacia & Duarte (2001)
Bai Tien, Dam Gia, My Giang,	Enhalus sp.	76-681	nd	nd	Gacia et al. (2003)
Vietnam	<i>Cymodocea</i> sp.				× ,
	Halodule sp. &				
	Thalassia sp.				

(C) Coral reef					
Phuket, Thailand	Acropora sp. Porities sp.	0.02	nd	nd	Chansang et al. (1992)
Puerto Rico, USA	Agaricia sp.	0.03-0.2	nd	nd	Loya (1976)
Describe Disco LICA	Monstratea sp.	0.2		1	$\mathbf{D}_{\mathrm{res}}$ (1070)
Puerto Rico, USA	Acropora sp.	0.2	nd	nd	Rogers (1979)
Great Barrier Reef, Australia	Acropora sp.	0.5	nd	nd	Fabricius & Wolanski (2000)
Puerto Rico, Caribbean	Porities sp.	1	nd		Torres & Morelock (2002)
	Siderastrea sp.				
Papua New Guinea	Acropora sp.	1.4	nd	nd	Kojis & Quinn (1984)
Puerto Rico, USA	Monstratea sp.	1.9	nd	nd	Torres (1998)
Discovery Bay, Jamaica	Monstratea sp.	1.9	nd	nd	Dodge et al. (1974)
Aquarium experiment	Favia sp.	2	nd	nd	Todd et al. (2004)
Great Barrier Reef, Australia	Leptoria sp.	2.5	nd	nd	Stafford-Smith (1992)
	Porities sp.				
Palawan, Philippines	Montipora sp.	3	nd	nd	Hodgson (1990)
	Porities sp.				
Natal, South Africa	Favia sp.	20	nd	nd	Riegl (1995),
	Favites sp.				Riegl & Bloomer (1995)
	Gyrosmillia sp.				
	<i>Platygyra</i> sp.				
Dampier Archipelago, Australia	Acropora sp.	20-30	nd	nd	Simpson (1988)
Curacao, Caribbean	Acropora sp.	43	nd	nd	Bak & Elgershuizen (1976)
Laboratory experiment	Astrangla sp.	<60	nd	nd	Peters & Pilson (1985)

Table S4. Studies showing flux of total suspended solids (TSS; g m⁻² d⁻¹) exported from a mangrove forest (column 4) compared to the initial import into the forest (Column 5) (g m⁻² d⁻¹). Some fluxes were not based on a full year of observation, and this can cause large variability. Nevertheless, for simplicity, all fluxes have been expressed as g m⁻² d⁻¹. Location indicates where the study was performed. Classification and area of the mangrove forest is information from the original data source except where indicated. Trapping capacity was calculated as 100 – (Import/Export × 100), which gives the percentage of the influx retained by the ecosystem. Column 7 is the export/import ratio, which gives an inverse retention potential of the forest. We also include the original units, how the export and import were calculated and the type/location of measurements for transparency, which are all taken from the original studies. The studies are in ascending order according to mangrove area (km²). *: data were taken from www.ozcoasts.au. Data from Adame et al. (2010) are estimations because these data were taken during a spring tide when inundation was higher, and this could affect the sedimentation rates

Location and reference	Classification	Mangrove area (km ²)	Export $(g m^{-2} d^{-1})$	Import $(g m^{-2} d^{-1})$	Trapping capacity (%)	Export/import ratio	Original units	Calculated from	Type of measurement	Location of measurement	Study
Mooloolah River, Australia Adame et al. (2010)	River dominated	0.3*	0.9	1	8	0.9	mg cm ⁻² spring tide ⁻¹	Sedimentation rate	Sediment traps	Depositional side of river/tidal creek	1
Ngerikiil, Palau Victor et al. (2004)	River dominated	0.7	0.4	0.5	25	0.7	tons $\mathrm{km}^{-2} \mathrm{yr}^{-1}$	Export rate	Sediment traps	Edge of river bank/perpendicular to river	2
Nudgee Creek, Australia Adame et al. (2010)	Tide dominated	~0.8*	0.090	0.094	5	1.0	mg cm ⁻² spring tide ⁻¹	Sedimentation rate	Sediment traps	Depositional side of river/tidal creek	3
Bald Hills Creek, Australia Adame et al. (2010)	Tide dominated	0.8*	0.130	0.131	1	1.0	mg cm ⁻² spring tide ⁻¹	Sedimentation rate	Sediment traps	Depositional side of river/tidal creek	4
Eprapah Creek, Australia Adame et al. (2010)	Tide dominated	1.3*	0.21	0.22	5	1.0	mg cm ⁻² spring tide ⁻¹	Sedimentation rate	Sediment traps	Depositional side of river/tidal creek	5
Tingalpa Creek, Australia Adame et al. (2010)	River dominated	1.3*	0.2	0.3	37	0.6	mg cm ⁻² spring tide ⁻¹	Sedimentation rate	Sediment traps	Depositional side of river/tidal creek	6

Ngerdorch, Palau Victor et al. (2004)	River dominated	1.5	0.005	0.01	64	0.4	$\frac{\text{tons km}^{-2}}{\text{yr}^{-1}}$	Export rate	Sediment traps	Edge of river bank/perpendicular to river	7
Caboolture River, Australia Adame et al. (2010)	River dominated	2.4*	0.1	0.2	31	0.7	mg cm ⁻² spring tide ⁻¹	Sedimentation rate	Sediment traps	Depositional side of river/tidal creek	8
Pohnpei, Federated States of Micronesia Victor et al. (2006)	River dominated	~4	37.3	62	40	0.6	$\mathrm{mg}~\mathrm{cm}^{-2}~\mathrm{d}^{-1}$	Export rate	Oceanographic instruments	Bay	9
Middle Creek, Australia Furukawa et al. (1997)	Tide dominated	6.5*	135	675	80	0.2	$\mathrm{mg}~\mathrm{cm}^{-2}~\mathrm{d}^{-1}$	Sedimentation rate	Sediment traps	Along boardwalk	10
Klong Ngao Estuary, Thailand Wattayakorn et al.	Tide dominated	11.5	1	12	90	0.1	kg d^{-1}	Export rate	Water samples	In estuary at 3 different depths	11
(1990) Mwache mangrove, Kenya Kitheka et al. (2002)	River dominated	17	107	233	54	0.5	g m ^{-2} tide ^{-1}	Sedimentation rate	Water samples	Along tidal creek	12

Nutrients

Table S5. Reports of fluxes in the water column (g N or P m⁻² d⁻¹) for (A) coral reefs (1983 to 2011) and (B) seagrass beds (1985 to 2010) of total dissolved nitrogen (N) and phosphorous (P). Mean nutrient flux (g N or P m⁻² d⁻¹) values across studies can be seen in Table 1 in the main article. The studies are in ascending order according to the year of the study. *: average values; nd: no available data

Location and ecosystem	Туре	Nutrient*	$(g m^{-2} d^{-1})$	Study
-		Ν	Р	-
(A) Fluxes in the water column at coral reefs				
Guam, Mariana Islands	Fringing reef	0.02	0.0004	Matson (1993)
Florida, USA	Offshore reef	0.004	0.00002	Corbett et al. (1999)
Yucatan, Mexico	Barrier reef	0.002	0.00007	Hernández-Terrones et al. (2010)
(B) Fluxes in the water column at seagrass beds	5			
Chesapeake Bay, USA	Zostera sp.	0.01	nd	Adapted from Lee & Olsen (1985)
Long Island, USA	Zostera sp.	0.02	nd	Adapted from Lee & Olsen (1985)
Long Island, USA	Zostera sp.	0.03	nd	Adapted from Lee & Olsen (1985)
Long Island, USA	Zostera sp.	0.02	nd	Adapted from Lee & Olsen (1985)
Buttermilk Bay, USA	Zostera sp.	0.02	nd	Valiela & Costa (1988)
Chincoteague bay, USA	Zostera sp.	0.01	nd	Boynton et al. (1996)
Sage Lot Pond, USA	Ruppia sp.	0.003	nd	McClelland et al. (1997)
Sage Lot Pond, USA	Zostera sp.	0.02	nd	Hauxwell et al. (1998)
Charlestown Pond, USA	Zostera sp.	0.02	nd	Adapted from Nixon et al. (2001)
Great South Bay, USA	Zostera sp.	0.004	nd	Adapted from Nixon et al. (2001)
Great Bay, USA	Zostera sp.	0.01	nd	Adapted from Nixon et al. (2001)
Great Bay, USA	Zostera sp.	0.09	nd	Adapted from Nixon et al. (2001)
Buttermilk Bay, USA	Zostera sp.	0.05	nd	Adapted from Nixon et al. (2001)
Kertinge Nor, USA	Zostera sp.	0.01	nd	Adapted from Nixon et al. (2001)
Florida, USA	Thalassia sp.	0.001	nd	Cornelisen & Thomas (2006)
Florida, USA	Thalassia sp.	0.002	nd	Cornelisen & Thomas (2006)
Spermonde Archipelago, Indonesia	<i>Cymodocea</i> sp.	0.1	nd	Vonk & Stapel (2008)
Spermonde Archipelago, Indonesia	Halodule sp.	0.1	nd	Vonk & Stapel (2008)
Spermonde Archipelago, Indonesia	Thalassia sp.	0.1	nd	Vonk & Stapel (2008)
Sonion, Greece	Posidonia sp.	0.04	0.002	Apostolaki et al. (2010)

Table S6. Studies showing water column fluxes (g N or P m⁻² d⁻¹) of dissolved (A) nitrogen (N, TN, DON + DIN) and (B) phosphorus (TP, SRP + PO₄, DIP, DOP) to and from a mangrove forest. All data are expressed as fluxes per day, but not all studies covered a full year, which will give rise to variability. Different studies are also variable because of differences in methodology. Import flux (column 6) indicates the nutrient being fluxed into the mangrove forest, and export flux (column 5) is nutrients, which are being fluxed out from or within a mangrove. Location (and reference) indicate where and by whom the study was completed. Export/import ratio (column 7) gives an inverse retention potential of the forest. The studies are in ascending order according to mangrove area inundated (km²). We also included the original units, how the import & export was calculated and the type/location of measurements for transparency, which are all taken from the original studies. nd: no available data, *:wetland area, not inundation area

Location and reference	Mangrove area inun- dated (km ²)	nutrient		Export $g m^{-2} d^{-1}$	Import $g m^{-2} d^{-1}$	Export/ import ratio	Original units	Calculated from	Type of measurements	Location of measurements	Study
(A) Nitrogen											
Shenzhen, South China Li (1997)	1.1	N	Relatively undisturbed	0.01	0.02	0.5	kg ha ⁻¹ yr ⁻¹	Uptake & Export rate	Nutrients in woody components	In mangrove trees	1
Taylor River, America	2.5	TN	nd	0.001	0.004	0.3	μ moles $m^{-2} h^{-1}$	Uptake & Export rate	Water samples	River	2
Davis et al. (2001) Coral Creek, Australia	5	DIN + DON	nd	0.001	0.003	0.5	kg d^{-1}	Export & Import	Water samples	Creek water column	3
Boto & Wellington (1988) Bahía de Lobos, Mexico Sánchez-Carrillo et	14	TN	Eutrophication problems	0.02	0.002	10	kg ha ⁻¹ d ⁻¹	Export & Import	Water samples	Mouth of channel	4
al. (2009) Sarasota Bay, USA Cited from Valiela		Ν	nd	0.1	0.2	0.5	kg ha ⁻¹ yr ⁻¹	Export & Import	nd	nd	5
& Cole (2002) Tampa Bay, USA Cited from Valiela	85*	Ν	nd	0.12	0.13	0.9	kg ha ⁻¹ yr ⁻¹	Export & Import	Suspended and dissolved N	Bay	6
& Cole (2002) Moreton Bay, USA Cited from Valiela	95*	TN	nd	0.1	0.12	0.8	kg ha ⁻¹ yr ⁻¹	Export & Import	Water samples	River mouth, plumes and ocean	7
& Cole (2002) Red river, Vietnam	107	DIN +	nd	0.03	0.1	0.2	kmol d ⁻¹	Export &	Water samples	Estuary	8

Wösten et al. (2003)		DON						Import			
Charlotte Harbour, USA	261*	Ν	nd	0.06	0.07	0.9	kg ha ⁻¹ yr ⁻¹	Export & Import	nd	nd	9
Cited from Valiela & Cole (2002) Tapi Estuary, Thailand Wattayakorn et al. (2001)	480	DIN + DON	nd	0.4	0.1	4	mol m ⁻² d ⁻¹	Export & Import	Water samples	Estuary	10
(B) Phosphorus											
Shenzhen, South China Li (1997)	1.1	Р	Relatively undisturbed	0.002	0.004	0.5	kg ha ⁻¹ yr ⁻¹		Nutrients in woody components	In mangrove trees	1
Taylor River, America Davis et al. (2001)	2.5	ТР	nd	0.0001	0.0002	0.5	μ moles m ⁻² h ⁻¹		Water samples	River	2
Coral Creek, Australia Boto & Wellington (1988)	5	DOP + PO ₄	nd	0.0005	0.001	0.5	kg d^{-1}		Water samples	Creek water column	3
Bahía de Lobos, Mexico Sánchez-Carrillo et al. (2009)	14	TP	Eutrophication problems	0.001	0.1	0.001	kg ha ⁻¹ d ⁻¹		Water samples	Mouth of channel	4
Red river, Vietnam Wösten et al. (2003)	107	Р	nd	0.06	0.09	0.7	kmol d ⁻¹		Water samples	Estuary	5
Tapi Estuary, Thailand Wattayakorn et al. (2001)	480	DOP + DIP	nd	0.017	0.02	0.9	mol $m^{-2} d^{-1}$		Water samples	Estuary	6

Table S7. Studies showing seagrass bed import and export of dissolved nitrogen sources (nitrate/nitrate, ammonium and urea) and phosphorus (g m⁻² d⁻¹) fluxes. Site and species indicates the location and type of seagrass of each individual study; each study looked at different dissolved nitrogen sources. To understand fluxes of import and export of nutrients, we totaled all of the types of nutrient (NH_4^+ , NO_3^- , urea) as an import; we understand this is a coarse estimation, but it allowed us to compare export of nutrients. Nutrient export denotes the concentration flux in the water column at the end of the experiment; nutrient import represents the concentration flux at the beginning of the experiment. The export/import ratio is an indication of the inverse retention potential of the seagrass bed (column 7). The reduction (%) is the percentage of nutrient and phosphorus retained by the seagrass plants and is calculated as $100 - (export/import \times 100)$. Type of measurement and the original units are taken from each study. The studies are in ascending order according to alphabetical order of the names of seagrass species. NA: not applicable

Site	Species	Area	Type of	Nutrient	Nutrient	Export/	Reduc-	Type of	Original	Study
		m^2	nutrient	export g m ⁻² d ⁻¹	import	import	tion	measurements	units	
				$g m^{-2} d^{-1}$	$g m^{-2} d^{-1}$	ratio	%			
Cadiz, Spain	C. nodosa	NA	$\mathrm{NH_4^+ NO_3^-}$	1.5	2	0.7	30	Incubations	μ gN m ⁻² h ⁻¹	1
Van Engeland et al. (2013)			Urea							
Spermonde Archipelago,	C. rotundata	0.5	Ν	0.09	0.1	0.8	22	Model verified with	μ mol l ⁻¹ h ⁻¹	2
Indonesia								litterbags		
Vonk & Stapel (2008)									1 1	
Spermonde Archipelago,	H. uninervis	0.5	Ν	0.106	0.112	1.0	5	Model verified with	μ mol l ⁻¹ h ⁻¹	3
Indonesia								litterbags		
Vonk & Stapel (2008)	_						6.0	·	2 1	
Sitia, Greece	P. oceanica	0.08	$\mathrm{NH_4}^+\mathrm{NO_3}^-$	0.0001	0.0003	0.3	60	Incubations	$\mu g N m^{-2} h^{-1}$	4
Apostolaki et al. (2012)	_								2 - 1	_
Psaromoura, Greece	P. oceanica	0.08	$\mathrm{NH_4}^+\mathrm{NO_3}^-$	0.0002	0.001	0.2	79	Incubations	$\mu g N m^{-2} h^{-1}$	5
Apostolaki et al. (2012)		o -	N .T	0.4		0.0			11	<i>c</i>
Spermonde Archipelago,	T. hemprichii	0.5	Ν	0.1	0.1	0.9	67	Model verified with	μ mol l ⁻¹ h ⁻¹	6
Indonesia								litterbags		
Vonk et al. (2008)	— 1.				0.000	.			ar (pup=1	_
Florida, USA	T. testudinum	3.7	$\mathrm{NH_4}^+ \mathrm{NO_3}^-$	0.0002	0.0006	0.4	57	Flume	$gN(gDW)^{-1}$	7
Cornelisen & Thomas									$s^{-1} \times 10^{-9}$	
(2006)	<i>T</i>		NH ⁺ NO =	0.0000	0.000	0.4	50	11	N (DWD=1	0
Florida, USA	T. testudinum	3.7	$\mathrm{NH_4^+ NO_3^-}$	0.0008	0.002	0.4	58	Flume	$gN(gDW)^{-1}$	8
Cornelisen & Thomas									$s^{-1} \times 10^{-9}$	
(2006)	7		NH ⁺ NO =		1.5	o 7	20	T 1 .	· − ² · −1	0
Cadiz, Spain	Z. noltii	NA	$\mathrm{NH_4^+ NO_3^-}$	1.1	1.5	0.7	30	Incubations	μ gN m ⁻² h ⁻¹	9
Van Engeland et al. (2013)	7		Urea	0.00004	0.0001	o 7	25	T 1 .	-21	10
Algeciras Bay, Spain	Z. noltii	NA	Р	0.00004	0.0001	0.7	35	Incubations	μ gN m ⁻² h ⁻¹	10
Pérez-Lloréns & Niell										
(1995)										

LITERATURE CITED

- Adame MF, Neil D, Wright SF, Lovelock CE (2010) Sedimentation within and among mangrove forests along a gradient of geomorphological settings. Estuar Coast Shelf Sci 86:21–30
- Apostolaki ET, Holmer M, Marba N, Karakassis I (2010) Metabolic imbalance in coastal vegetated (*Posidonia oceanica*) and unvegetated benthic ecosystems. Ecosystems 13:459–471
- Apostolaki ET, Vizzini S, Karakassis I (2012) Leaf vs. epiphyte nitrogen uptake in nutrient enriched Mediterranean seagrass (*Posidonia oceanica*) meadow. Aquat Bot 96:58–62
- Bak RPM, Elgershuizen JHBW (1976) Patterns of oil sediment rejection in corals. Mar Biol 37: 105-113
- Boto KG, Wellington JT (1988) Seasonal variations in concentration and fluxes of dissolved organic and inorganic materials in a tropical tidally dominated, mangrove waterway. Mar Ecol Prog Ser 50:151–160
- Boynton WR, Murray L, Hagy JD, Stokes C, Kemp WM (1996) A comparative analysis of eutrophication patterns in a temperate coastal lagoon. Estuaries 19(2B):408–421
- Bradley K, Houser C (2009) Relative velocity of seagrass blades: implications for wave attenuation in low-energy environments. J Geophys Res 114:F01004
- Brander RW, Kench PS, Hart D (2004) Spatial and temporal variations in wave characteristics across a reef platform, Warraber Island, Torres Strait, Australia. Mar Geol 207:169–184
- Bryan KR, Tay HW, Pilditch CA, Lundquist CJ, Hunt HL (2007) The effects of seagrass (*Zostera muelleri*) on boundary-layer hydrodynamics in Whangapoua Estuary, New Zealand. J Coast Res 50:668–672
- Chansang H, Phongsuwan N, Boonyanate P (1992) Growth of corals under effect of sedimentation along the northwest coast of Phuket Island, Thailand. Proc 7th Int Coral Reef Symp, Guam, p 241–248
- Corbett DR, Chanton J, Burnett W, Dillon K, Rutkowski C, Fourqurean JW (1999) Patterns of groundwater discharge into Florida Bay. Limnol Oceanogr 44:1045–1055
- Cornelisen CD, Thomas FIM (2006) Water flow enhances ammonium and nitrate uptake in a seagrass community. Mar Ecol Prog Ser 312:1–13
- Dauby P, Bale AJ, Bloomer N, Canon C and others (1995) Particle fluxes over a Mediterranean seagrass bed: a one year case study. Mar Ecol Prog Ser 126:233–246
- Davis SE, Childers DL, Day JW, Rudnick DT, Sklar FH (2001) Nutrient dynamics in vegetated and unvegetated areas of a southern Everglades mangrove creek. Estuar Coast Shelf Sci 52:753–768
- Dodge RE, Aller RC, Thompson J (1974) Coral growth related to resuspension of bottom sediments. Nature 247:574–577
- Fabricius KE, Wolanski E (2000) Rapid smothering of coral reef organisms by muddy marine snow. Estuar Coast Shelf Sci 50:115–120
- Filipot JF, Cheung JF (2012) Spectral wave modeling in fringing reef environments. Coast Eng 67: 67-79
- Fonseca MS, Cahalan JA (1992) A preliminary evaluation of wave attenuation by 4 species of seagrass. Estuar Coast Shelf Sci 35:565–576
- Furukawa K, Wolanski E, Mueller H (1997) Currents and sediment transport in mangrove forests. Estuar Coast Shelf Sci 44:301–310
- Gacia E, Duarte CM (2001) Sediment retention by a Mediterranean *Posidonia oceanica* meadow: the balance between deposition and resuspension. Estuar Coast Shelf Sci 52:505–514
- Gacia E, Duarte CM, Marba N, Terrados J, Kennedy H, Fortes MD, Tri NH (2003) Sediment deposition and production in SE-Asia seagrass meadows. Estuar Coast Shelf Sci 56:909–919
- Hansen JCR, Reidenbach MA (2012) Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension. Mar Ecol Prog Ser 448:271–287
- Hauxwell J, McClelland J, Behr PJ, Valiela I (1998) Relative importance of grazing and nutrient controls of macroalgal biomass in three temperate shallow estuaries. Estuaries 21:347–360
- Hernández-Terrones L, Rebolledo-Vieyra M, Merino-Ibarra M, Soto M, Le-Cossec A, Monroy-Ríos E (2010) Groundwater pollution in a karstic region (NE Yucatan): baseline nutrient content and flux to coastal ecosystems. Water Air Soil Pollut 218:517–528

Hodgson G (1990) Tetracycline reduces sedimentation damage to corals. Mar Biol 104:493–496

- Infantes E, Terrados J, Orfila A, Canellas B, Alvarez-Ellacuria A (2009) Wave energy and the upper depth limit distribution of *Posidonia oceanica*. Bot Mar 52:419–427
- Kitheka JU, Ongwenyi GS, Mavuti KM (2002) Dynamics of suspended sediment exchange and transport in a degraded mangrove creek in Kenya. Ambio 31:580–587

Koch EM (2001) Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24:1–17

Kojis BL, Quinn NJ (1984) Seasonal and depth variation in fecundity of *Acropora palifera* at two reefs in Papua New Guinea. Coral Reefs 3:165–172

- Lee SY (1997) Annual cycle of biomass of a threatened population of the intertidal seagrass *Zostera japonica* in Hong Kong. Mar Biol 129:183–193
- Lee V, Olsen S (1985) Eutrophication and management initatives for the control of nutrient inputs to Rhode Island coastal lagoons. Estuaries 8:191–202
- Li MS (1997) Nutrient dynamics of a Futian mangrove forest in Shenzhen, South China. Estuar Coast Shelf Sci 45:463–472
- Loya Y (1976) Recolonization of Red Sea corals affected by natural catastrophes and man-made perturbations. Ecology 57:278–289
- Lugo-Fernández A, Hernandez-Avila ML, Roberts HH (1994) Wave-energy distribution and hurricane effects on Margarita Reef, south-western Puerto Rico. Coral Reefs 13:21–32
- Lugo-Fernández A, Roberts HH, Wiseman WJ (1998) Tide effects on wave attenuation and wave setup on a Caribbean coral reef. Estuar Coast Shelf Sci 47:385–393
- Matson EA (1993) Nutrient flux through soils and aquifers to the coastal zone of Guam (Mariana Islands). Limnol Oceanogr 38:361–371
- Mazda Y, Magi M, Kogo M, Hong PN (1997) Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves Salt Marshes 1:127–135
- McClelland JW, Valiela I, Michener RH (1997) Nitrogen-stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. Limnol Oceanogr 42:930–937
- Newell RIE, Koch EW (2004) Modeling seagrass density and distribution in response to changes in turbidity stemming from bivalve filtration and seagrass sediment stabilization. Estuaries 27: 793–806
- Nixon S, Bucklet B, Granger S, Bintz J (2001) Responses of very shallow marine ecosystems to nutrient enrichment. Hum Ecol Risk Assess 7:1457–1481

Pequignet AC, Becker JM, Merrifield MA, Boc SJ (2011) The dissipation of wind wave energy across a fringing reef at Ipan, Guam. Coral Reefs 30:71-82

- Pérez-Lloréns JL, Niell FX (1995) Short-term phosphate uptake kinetics in *Zostera noltii* Hornem: a comparison between excised leaves and sediment-rooted plants. Hydrobiologia 297:17–27
- Peters EC, Pilson MEQ (1985) A comparative study of the effects of sedimentation on symbiotic and asymbiotic colonies of the coral *Astrangia danae*. J Exp Mar Biol Ecol 92:215–230
- Phuoc VLH, Massel SR (2006) Experiments on wave motion and suspended sediment concentration at Nang Hai, Can Gio mangrove forest, Southern Vietnam. Oceanologia 48:23–40
- Riegl B (1995) Effects of sand deposition on scleractinian and alcyonacean corals. Mar Biol 121: 517–526
- Riegl B, Bloomer JP (1995) Tissues damage in hard and soft corals due to experimental exposure to sedimentation. Proc 1st European Regional Meeting ISRS, Vienna. Beitr Palaeontol Oesterr 20:51–63
- Roberts HH (1975) Physical processes in fringing reef system. J Mar Res 33:233-260
- Roberts HH, Lugo A, Carter B, Simms M (1988) Across reef flux and shallow subsurface hydrology in modern coral reefs. Proc 6th Int Coral Reef Symp
- Rogers CS (1979) The effect of shading on coral reef structure and function. J Exp Mar Biol Ecol 41:269–288
- Sánchez-Carrillo S, Sanchez-Andres R, Alatorre LC, Angeler DG, Alvarez-Cobelas M, Arreola-Lizarraga JA (2009) Nutrient fluxes in a semi-arid microtidal mangrove wetland in the Gulf of California. Estuar Coast Shelf Sci 82:654–662
- Simpson CJ (1988) Ecology of scleractinian corals in the Dampier Archipelago, Western Australia. Environmental Protection Authority, Perth, Tech Ser 23:227
- Stafford-Smith MG (1992) Mortality of the hard coral *Leptoria phrygia* under persistent sediment influx. Proc 7th Int Coral Reef Symp, Guam 1:289–299
- Suhayda JN, Roberts HH (1977) Wave action and sediment transport on fringing reefs. Proc 3rd Int Coral Reef Symp 2:65–70
- Suzuki T, Zijlema M, Burger B, Meijer MC, Narayan S (2012) Wave dissipation by vegetation with layer schematization in SWAN. Coast Eng 59:64–71
- Todd PA, Sidle RC, Lewin-Koh NJI (2004) An aquarium experiment for identifying the physical factors inducing morphological change in two massive scleractinian corals. J Exp Mar Biol Ecol 299:97–113

- Torres JL (1998) Effects of sediment influx on the growth rates of *Montastraea annularis* (Ellis and Solander) in southwest, Puerto Rico. MSc thesis. University of Puerto Rico, Mayaguez
- Torres J, Morelock J (2002) Effect of terrigenous sediment influx on coral cover and linear extension rates of three Caribbean massive coral species. Caribb J Sci 38:222–229
- Valiela I, Cole ML (2002) Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems 5:92–102
- Valiela I, Costa JE (1988) Eutrophication of Buttermilk Bay, a Cape Cod coastal embayment: concentrations of nutrients and watershed nutrient budgets. Environ Manage 12:539–553
- Van Engeland T, Bouma TJ, Morris EP, Brun FG and others (2013) Dissolved organic matter uptake in a temperate seagrass ecosystem. Mar Ecol Prog Ser 478:87–100
- Victor S, Golbuu Y, Wolanski E, Richmond RH (2004) Fine sediment trapping in two mangrovefringed estuaries exposed to contrasting land-use intensity, Palau, Micronesia. Wetlands Ecol Manage 12:277–283
- Victor S, Neth L, Golbuu Y, Wolanski E, Richmond RH (2006) Sedimentation in mangroves and coral reefs in a wet tropical island, Pohnpei, Micronesia. Estuar Coast Shelf Sci 66:409–416
- Vonk JA, Middelburg JJ, Stapel J, Bouma TJ (2008) Dissolved organic nitrogen uptake by seagrasses. Limnol Oceanogr 53:542–548
- Wattayakorn G, Wolanski E, Kjerfve B (1990) Mixing, trapping and outwelling in the Klong Ngao mangrove swamp, Thailand. Estuar Coast Shelf Sci 31:667–688
- Wattayakorn G, Prapong P, Noichareon D (2001) Biogeochemical budgets and processes in Bandon Bay, Suratthani, Thailand. J Sea Res 46:133–142
- Wolanski E, Mazda Y, King B, Gay S (1990) Dynamics, flushing and trapping in Hinchinbrook Channel, a giant mangrove swamp, Australia. Estuar Coast Shelf Sci 31:555–579
- Wösten JHM, de Willigen P, Tri NH, Lien TV, Smith SV (2003) Nutrient dynamics in mangrove areas of a Red River Estuary in Vietnam. Estuar Coast Shelf Sci 57:65–72