The following supplement accompanies the article

Effects of variability among individuals on zooplankton population dynamics under environmental conditions

Rujia Bi*, Hui Liu

*Corresponding author: rbi@vt.edu

*Marine Ecology Progress Series 564: 9–28 (2017)

![Figure S1](image)

Fig. S1. Experiment 1: a typical simulation showing (a) daily growth of body weight of an individual, (b) daily mortality of an individual, (c) transformation efficiency between gonad weight and eggs (E_{eg}), and (d) hatching rate under different temperature levels. Simulation was performed under favorable food concentration (800 µgC L$^{-1}$) and favorable salinity (35). The simulated individual was assigned mean values of the four physiological traits ($I_{\text{max}} = 1.209$, $\alpha = 0.00675$, $\beta_1 = 0.132$, $\beta_2 = 0.132$, see Table 1 for the definition of the four traits). $T =$ temperature ($^\circ$C).
Fig. S2. Experiment 2: a typical simulation showing (a) daily growth of body weight of an individual, (b) daily mortality of an individual under different food concentration levels. Simulation was performed under favorable temperature (24 °C) and favorable salinity (35). The simulated individual was assigned mean values of the four physiological traits ($I_{\text{max}} = 1.209$, $\alpha = 0.00675$, $\beta_1 = 0.132$, $\beta_2 = 0.132$, see Table 1 for the definition of the four traits). $P = \text{food concentration (μgC L}^{-1})$.

Fig. S3. Experiment 3: a typical simulation showing hatching rate under different salinity levels. Simulation was performed under favorable temperature (24 °C) and favorable food concentration (800 μgC L$^{-1}$). The simulated individual was assigned mean values of the four physiological traits ($I_{\text{max}} = 1.209$, $\alpha = 0.00675$, $\beta_1 = 0.132$, $\beta_2 = 0.132$, see Table 1 for the definition of the four traits). $S = \text{salinity}$.