Pacific herring spawn events influence nearshore subtidal and intertidal species

C. H. Fox*, P. C. Paquet, T. E. Reimchen

*Corresponding author: carolinehfox@gmail.com

Supplement

Table S1. Mean δ^{15}N ± SE and δ^{13}C ± SE isotopic values and C:N ratios for intertidal and nearshore subtidal invertebrate and macrophyte species before (0) and after (1) the Pacific herring (Clupea pallasii) spawn events on beaches in Quatsino Sound, British Columbia (2011 - 2012). Control beaches are sites that did not experience herring spawn events. At each beach location, five samples were collected, with exception to Traskorchestia spp., where 10 samples were collected.

<table>
<thead>
<tr>
<th>Species</th>
<th>Beach</th>
<th>Year</th>
<th>Spawn status (before = 0, after = 1)</th>
<th>δ^{15}N ± SE (%)</th>
<th>δ^{13}C ± SE (%)</th>
<th>C:N ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyllospadix serrulatus</td>
<td>Control 1</td>
<td>2011</td>
<td>0</td>
<td>11.00 ± 0.53</td>
<td>-19.02 ± 0.51</td>
<td>11.73 ± 0.17</td>
</tr>
<tr>
<td></td>
<td>Control 1</td>
<td>2011</td>
<td>1</td>
<td>9.96 ± 0.57</td>
<td>-16.05 ± 0.76</td>
<td>11.58 ± 0.41</td>
</tr>
<tr>
<td></td>
<td>Control 2</td>
<td>2011</td>
<td>0</td>
<td>9.14 ± 0.45</td>
<td>-18.31 ± 0.46</td>
<td>13.86 ± 0.50</td>
</tr>
<tr>
<td></td>
<td>Control 2</td>
<td>2011</td>
<td>1</td>
<td>8.23 ± 0.33</td>
<td>-15.66 ± 0.32</td>
<td>11.03 ± 0.31</td>
</tr>
<tr>
<td></td>
<td>Spawn</td>
<td>2011</td>
<td>0</td>
<td>9.49 ± 0.50</td>
<td>-16.42 ± 0.68</td>
<td>11.66 ± 0.49</td>
</tr>
<tr>
<td></td>
<td>Spawn</td>
<td>2011</td>
<td>1</td>
<td>9.37 ± 0.35</td>
<td>-15.52 ± 0.42</td>
<td>8.62 ± 0.31</td>
</tr>
<tr>
<td></td>
<td>Spawn</td>
<td>2011</td>
<td>0</td>
<td>9.39 ± 0.45</td>
<td>-15.23 ± 0.29</td>
<td>11.18 ± 0.31</td>
</tr>
<tr>
<td></td>
<td>Spawn</td>
<td>2011</td>
<td>1</td>
<td>10.26 ± 0.16</td>
<td>-14.45 ± 0.62</td>
<td>8.70 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>Spawn</td>
<td>2011</td>
<td>0</td>
<td>8.53 ± 0.54</td>
<td>-16.42 ± 0.59</td>
<td>12.15 ± 0.32</td>
</tr>
<tr>
<td></td>
<td>Spawn</td>
<td>2011</td>
<td>1</td>
<td>10.08 ± 0.18</td>
<td>-14.38 ± 0.65</td>
<td>9.39 ± 0.30</td>
</tr>
<tr>
<td></td>
<td>Control 1</td>
<td>2012</td>
<td>0</td>
<td>11.35 ± 0.80</td>
<td>-20.67 ± 0.50</td>
<td>12.09 ± 0.76</td>
</tr>
<tr>
<td></td>
<td>Control 1</td>
<td>2012</td>
<td>1</td>
<td>8.10 ± 0.15</td>
<td>-17.14 ± 0.44</td>
<td>11.69 ± 0.25</td>
</tr>
<tr>
<td></td>
<td>Spawn</td>
<td>2012</td>
<td>0</td>
<td>11.21 ± 0.47</td>
<td>-17.90 ± 0.39</td>
<td>13.86 ± 0.60</td>
</tr>
<tr>
<td></td>
<td>Spawn</td>
<td>2012</td>
<td>1</td>
<td>10.67 ± 0.21</td>
<td>-14.79 ± 0.43</td>
<td>9.26 ± 0.21</td>
</tr>
<tr>
<td>Macroystis pyriferas</td>
<td>Control 1</td>
<td>2011</td>
<td>0</td>
<td>5.30 ± 0.31</td>
<td>-13.72 ± 0.55</td>
<td>9.61 ± 0.98</td>
</tr>
<tr>
<td></td>
<td>Control 1</td>
<td>2011</td>
<td>1</td>
<td>6.04 ± 0.11</td>
<td>-13.57 ± 0.20</td>
<td>11.22 ± 0.24</td>
</tr>
<tr>
<td></td>
<td>Control 2</td>
<td>2011</td>
<td>0</td>
<td>6.63 ± 0.69</td>
<td>-15.32 ± 0.63</td>
<td>11.83 ± 1.22</td>
</tr>
<tr>
<td></td>
<td>Control 2</td>
<td>2011</td>
<td>1</td>
<td>5.98 ± 0.19</td>
<td>-13.14 ± 0.14</td>
<td>11.79 ± 0.59</td>
</tr>
<tr>
<td></td>
<td>Spawn</td>
<td>2011</td>
<td>0</td>
<td>4.54 ± 0.21</td>
<td>-14.20 ± 0.38</td>
<td>8.93 ± 0.34</td>
</tr>
<tr>
<td></td>
<td>Spawn</td>
<td>2011</td>
<td>1</td>
<td>9.48 ± 0.33</td>
<td>-13.48 ± 0.38</td>
<td>9.02 ± 0.14</td>
</tr>
<tr>
<td></td>
<td>Spawn</td>
<td>2011</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Spawn</td>
<td>2011</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Spawn</td>
<td>2011</td>
<td>0</td>
<td>4.93 ± 0.38</td>
<td>-15.10 ± 0.35</td>
<td>9.61 ± 0.36</td>
</tr>
<tr>
<td></td>
<td>Spawn</td>
<td>2011</td>
<td>1</td>
<td>7.77 ± 0.31</td>
<td>-12.77 ± 0.29</td>
<td>9.63 ± 0.22</td>
</tr>
<tr>
<td></td>
<td>Control 1</td>
<td>2012</td>
<td>0</td>
<td>4.59 ± 0.44</td>
<td>-14.88 ± 0.47</td>
<td>10.14 ± 0.15</td>
</tr>
<tr>
<td></td>
<td>Control 1</td>
<td>2012</td>
<td>1</td>
<td>5.83 ± 0.26</td>
<td>-13.72 ± 0.23</td>
<td>12.93 ± 0.25</td>
</tr>
<tr>
<td></td>
<td>Spawn</td>
<td>2012</td>
<td>0</td>
<td>4.87 ± 0.27</td>
<td>-16.50 ± 0.47</td>
<td>8.65 ± 0.14</td>
</tr>
<tr>
<td></td>
<td>Spawn 1 2012</td>
<td>1</td>
<td>9.22 ± .37</td>
<td>-14.07 ± 0.27</td>
<td>12.89 ± 0.47</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>----</td>
<td>------------</td>
<td>---------------</td>
<td>--------------</td>
<td></td>
</tr>
</tbody>
</table>

Fucus spp.

<table>
<thead>
<tr>
<th></th>
<th>Control 1 2011</th>
<th>0</th>
<th>6.48 ± 0.14</th>
<th>-18.05 ± 0.31</th>
<th>11.15 ± 0.31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control 1 2011</td>
<td>1</td>
<td>8.57 ± 0.12</td>
<td>-16.25 ± 0.46</td>
<td>11.21 ± 0.36</td>
</tr>
<tr>
<td></td>
<td>Control 2 2011</td>
<td>0</td>
<td>6.82 ± 0.22</td>
<td>-17.51 ± 0.22</td>
<td>13.04 ± 0.39</td>
</tr>
<tr>
<td></td>
<td>Control 2 2011</td>
<td>1</td>
<td>7.51 ± 0.24</td>
<td>-15.09 ± 0.53</td>
<td>11.67 ± 0.24</td>
</tr>
<tr>
<td></td>
<td>Spawn 1 2011</td>
<td>0</td>
<td>7.56 ± 0.10</td>
<td>-18.50 ± 0.35</td>
<td>12.47 ± 0.14</td>
</tr>
<tr>
<td></td>
<td>Spawn 1 2011</td>
<td>1</td>
<td>11.20 ± 0.25</td>
<td>-15.87 ± 0.16</td>
<td>9.90 ± 0.27</td>
</tr>
<tr>
<td></td>
<td>Spawn 2 2011</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Spawn 2 2011</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Spawn 3 2011</td>
<td>0</td>
<td>7.16 ± 0.15</td>
<td>-20.21 ± 1.22</td>
<td>12.93 ± 0.40</td>
</tr>
<tr>
<td></td>
<td>Spawn 3 2011</td>
<td>1</td>
<td>9.80 ± 0.12</td>
<td>-16.08 ± 0.57</td>
<td>11.24 ± 0.62</td>
</tr>
<tr>
<td></td>
<td>Control 1 2012</td>
<td>0</td>
<td>5.58 ± 0.29</td>
<td>-20.27 ± 0.39</td>
<td>12.17 ± 0.30</td>
</tr>
<tr>
<td></td>
<td>Control 1 2012</td>
<td>1</td>
<td>7.57 ± 0.16</td>
<td>-16.61 ± 0.58</td>
<td>16.27 ± 1.02</td>
</tr>
<tr>
<td></td>
<td>Spawn 1 2012</td>
<td>0</td>
<td>6.49 ± 0.12</td>
<td>-18.24 ± 0.38</td>
<td>11.07 ± 0.33</td>
</tr>
<tr>
<td></td>
<td>Spawn 1 2012</td>
<td>1</td>
<td>12.03 ± 0.12</td>
<td>-14.79 ± 0.16</td>
<td>11.33 ± 0.55</td>
</tr>
</tbody>
</table>

Callithamnion spp.

<table>
<thead>
<tr>
<th></th>
<th>Control 1 2011</th>
<th>0</th>
<th>7.75 ± 0.26</th>
<th>-22.44 ± 0.44</th>
<th>6.87 ± 0.16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control 1 2011</td>
<td>1</td>
<td>8.10 ± 0.23</td>
<td>-18.67 ± 0.35</td>
<td>7.12 ± 0.08</td>
</tr>
<tr>
<td></td>
<td>Control 2 2011</td>
<td>0</td>
<td>7.62 ± 0.31</td>
<td>-21.76 ± 0.15</td>
<td>7.54 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>Control 2 2011</td>
<td>1</td>
<td>6.26 ± 0.06</td>
<td>-19.74 ± 0.36</td>
<td>7.07 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>Spawn 1 2011</td>
<td>0</td>
<td>8.60 ± 0.30</td>
<td>-21.69 ± 0.56</td>
<td>6.68 ± 0.16</td>
</tr>
<tr>
<td></td>
<td>Spawn 1 2011</td>
<td>1</td>
<td>8.63 ± 0.16</td>
<td>-19.74 ± 1.03</td>
<td>6.86 ± 0.08</td>
</tr>
<tr>
<td></td>
<td>Spawn 2 2011</td>
<td>0</td>
<td>7.39 ± 0.30</td>
<td>-21.75 ± 0.65</td>
<td>6.21 ± 0.17</td>
</tr>
<tr>
<td></td>
<td>Spawn 2 2011</td>
<td>1</td>
<td>10.27 ± 0.43</td>
<td>-20.16 ± 1.61</td>
<td>6.18 ± 0.28</td>
</tr>
<tr>
<td></td>
<td>Spawn 3 2011</td>
<td>0</td>
<td>6.90 ± 0.26</td>
<td>-21.55 ± 0.36</td>
<td>6.93 ± 0.14</td>
</tr>
<tr>
<td></td>
<td>Spawn 3 2011</td>
<td>1</td>
<td>8.90 ± 0.08</td>
<td>-19.30 ± 0.25</td>
<td>6.79 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>Control 1 2012</td>
<td>0</td>
<td>6.85 ± 0.41</td>
<td>-23.31 ± 0.54</td>
<td>6.63 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>Control 1 2012</td>
<td>1</td>
<td>6.45 ± 0.13</td>
<td>-20.22 ± 0.36</td>
<td>8.25 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>Spawn 1 2012</td>
<td>0</td>
<td>7.51 ± 0.18</td>
<td>-22.49 ± 0.46</td>
<td>6.87 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>Spawn 1 2012</td>
<td>1</td>
<td>10.02 ± 0.16</td>
<td>-18.47 ± 0.93</td>
<td>7.47 ± 0.07</td>
</tr>
</tbody>
</table>

Ulva lactuca

<table>
<thead>
<tr>
<th></th>
<th>Control 1 2011</th>
<th>0</th>
<th>7.27 ± 0.17</th>
<th>-20.23 ± 0.34</th>
<th>7.05 ± 0.07</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control 1 2011</td>
<td>1</td>
<td>7.99 ± 0.08</td>
<td>-18.63 ± 0.20</td>
<td>7.32 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>Control 2 2011</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Control 2 2011</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Spawn 1 2011</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Spawn 1 2011</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Spawn 2 2011</td>
<td>0</td>
<td>7.31 ± 0.04</td>
<td>-17.30 ± 0.54</td>
<td>6.72 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>Spawn 2 2011</td>
<td>1</td>
<td>12.32 ± 0.18</td>
<td>-17.13 ± 0.48</td>
<td>6.43 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>Spawn 3 2011</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Spawn 3 2011</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Control 1 2012</td>
<td>0</td>
<td>7.09 ± 0.09</td>
<td>-19.52 ± 0.21</td>
<td>7.05 ± 0.11</td>
</tr>
<tr>
<td></td>
<td>Control 1 2012</td>
<td>1</td>
<td>8.04 ± 0.10</td>
<td>-18.53 ± 0.26</td>
<td>10.18 ± 0.19</td>
</tr>
<tr>
<td></td>
<td>Spawn 1 2012</td>
<td>0</td>
<td>7.29 ± 0.05</td>
<td>-19.79 ± 0.41</td>
<td>6.60 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>Spawn 1 2012</td>
<td>1</td>
<td>12.73 ± 0.23</td>
<td>-16.23 ± 0.33</td>
<td>7.02 ± 0.08</td>
</tr>
</tbody>
</table>

Traskorchezia spp.

<table>
<thead>
<tr>
<th></th>
<th>Control 1 2011</th>
<th>0</th>
<th>10.94 ± 0.20</th>
<th>-12.98 ± 0.08</th>
<th>6.21 ± 0.10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control 1 2011</td>
<td>1</td>
<td>11.37 ± 0.14</td>
<td>-12.95 ± 0.08</td>
<td>5.92 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>Control 2 2011</td>
<td>0</td>
<td>11.20 ± 0.15</td>
<td>-13.11 ± 0.15</td>
<td>5.73 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>Control 2 2011</td>
<td>1</td>
<td>11.03 ± 0.10</td>
<td>-13.05 ± 0.11</td>
<td>5.52 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>Spawn 1 2011</td>
<td>0</td>
<td>11.95 ± 0.26</td>
<td>-12.40 ± 0.14</td>
<td>6.39 ± 0.14</td>
</tr>
<tr>
<td></td>
<td>Spawn 1 2011</td>
<td>1</td>
<td>12.34 ± 0.18</td>
<td>-12.96 ± 0.13</td>
<td>6.19 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>Spawn 2 2011</td>
<td>0</td>
<td>11.04 ± 0.10</td>
<td>-12.36 ± 0.10</td>
<td>5.95 ± 0.08</td>
</tr>
<tr>
<td></td>
<td>Spawn 2 2011</td>
<td>1</td>
<td>11.34 ± 0.24</td>
<td>-12.79 ± 0.14</td>
<td>5.62 ± 0.11</td>
</tr>
<tr>
<td></td>
<td>Spawn 3 2011</td>
<td>0</td>
<td>11.57 ± 0.10</td>
<td>-11.68 ± 0.08</td>
<td>6.81 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>Spawn 3 2011</td>
<td>1</td>
<td>11.76 ± 0.13</td>
<td>-11.70 ± 0.10</td>
<td>6.60 ± 0.09</td>
</tr>
</tbody>
</table>
Tectura persona

Control 1	2011	0	10.21 ± 0.22	-17.25 ± 0.55	3.89 ± 0.19
Control 1	2011	1	9.85 ± 0.18	-16.54 ± 0.29	4.47 ± 0.36
Control 2	2011	0	9.32 ± 0.20	-15.27 ± 0.89	4.50 ± 0.21
Control 2	2011	1	9.16 ± 0.15	-15.26 ± 0.84	4.18 ± 0.20
Spawn 1	2011	0	11.90 ± 0.51	-15.72 ± 0.54	3.93 ± 0.11
Spawn 1	2011	1	11.67 ± 0.18	-16.49 ± 0.17	3.85 ± 0.11
Spawn 2	2011	0	9.66 ± 0.13	-14.60 ± 0.39	3.85 ± 0.05
Spawn 2	2011	1	10.90 ± 0.17	-12.01 ± 1.48	4.08 ± 0.14
Spawn 3	2011	0	10.84 ± 0.07	-18.63 ± 0.32	4.01 ± 0.19
Spawn 3	2011	1	10.49 ± 0.19	-15.69 ± 0.48	3.86 ± 0.11
Control 1	2012	0	9.00 ± 0.12	-17.12 ± 0.62	4.05 ± 0.09
Control 1	2012	1	9.16 ± 0.08	-15.37 ± 0.84	4.13 ± 0.15
Spawn 1	2012	0	11.01 ± 0.23	-15.96 ± 1.26	4.02 ± 0.13
Spawn 1	2012	1	11.37 ± 0.26	-17.48 ± 0.49	3.91 ± 0.10

Nucella lamellosa

Control 1	2011	0			
Control 1	2011	1			
Control 2	2011	0	13.18 ± 0.17	-14.62 ± 0.16	3.79 ± 0.10
Control 2	2011	1	12.27 ± 0.17	-15.54 ± 0.10	3.77 ± 0.02
Spawn 1	2011	0			
Spawn 1	2011	1			
Spawn 2	2011	0	11.93 ± 0.15	-15.09 ± 0.06	3.85 ± 0.09
Spawn 2	2011	1	12.22 ± 0.14	-15.28 ± 0.05	3.80 ± 0.07
Spawn 3	2011	0			
Spawn 3	2011	1			
Control 1	2012	0	11.73 ± 0.25	-16.52 ± 0.27	4.45 ± 0.19
Control 1	2012	1	12.00 ± 0.10	-16.32 ± 0.13	3.76 ± 0.04
Spawn 1	2012	0	13.34 ± 0.20	-15.02 ± 0.25	4.03 ± 0.37
Spawn 1	2012	1	12.97 ± 0.12	-15.28 ± 0.08	3.87 ± 0.06

Nucella ostrina

Control 1	2011	0			
Control 1	2011	1			
Control 2	2011	0			
Control 2	2011	1			
Spawn 1	2011	0			
Spawn 1	2011	1			
Spawn 2	2011	0			
Spawn 2	2011	1			
Spawn 3	2011	0			
Spawn 3	2011	1			
Control 1	2012	0	12.11 ± 0.09	-16.76 ± 0.06	3.76 ± 0.12
Control 1	2012	1	12.10 ± 0.16	-16.69 ± 0.12	3.74 ± 0.07
Spawn 1	2012	0	13.49 ± 0.17	-15.73 ± 0.24	4.07 ± 0.20
Spawn 1	2012	1	13.80 ± 0.21	-15.36 ± 0.11	3.72 ± 0.05
Table S2. Results of two General Linear Mixed Models (GLMMs) to explain variation in δ^{15}N and δ^{13}C levels in macrophyte and invertebrates species collected before and after (variable = time) Pacific herring (*Clupea pallasii*) spawn events on beaches with and without spawn (variable = spawn). Shown are results of type III tests of fixed effects and estimates of covariance parameters for random effects (species, location, and year), including Wald Z statistic and corresponding significance.

<table>
<thead>
<tr>
<th>Response variable</th>
<th>Effect</th>
<th>Variable</th>
<th>d.f.</th>
<th>F</th>
<th>Parameter estimate</th>
<th>SE</th>
<th>Wald Z</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intercept</td>
<td>1,10.39</td>
<td>203.52</td>
<td>10.98</td>
<td>0.72</td>
<td></td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>δ^{15}N</td>
<td>Fixed</td>
<td>Time</td>
<td>1,505.45</td>
<td>0.02</td>
<td>0.02</td>
<td>0.13</td>
<td>0.883</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fixed</td>
<td>Spawn</td>
<td>1,370.33</td>
<td>83.77</td>
<td>1.58</td>
<td>0.17</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Random</td>
<td>Species</td>
<td>4.62</td>
<td>2.19</td>
<td>2.10</td>
<td>0.035</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Random</td>
<td>Location</td>
<td>0.12</td>
<td>0.09</td>
<td>1.29</td>
<td>0.199</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Random</td>
<td>Year</td>
<td>0.04</td>
<td>0.06</td>
<td>0.58</td>
<td>0.560</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Random</td>
<td>Residual</td>
<td>1.15</td>
<td>0.07</td>
<td>16.77</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intercept</td>
<td>1,10.10</td>
<td>401.88</td>
<td>-15.56</td>
<td>0.81</td>
<td></td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>δ^{13}C</td>
<td>Fixed</td>
<td>Time</td>
<td>1,491.55</td>
<td>52.92</td>
<td>1.25</td>
<td>0.17</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fixed</td>
<td>Spawn</td>
<td>1,343.11</td>
<td>0.01</td>
<td>0.03</td>
<td>0.23</td>
<td>0.914</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Random</td>
<td>Species</td>
<td>4.89</td>
<td>2.32</td>
<td>2.11</td>
<td>0.035</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Random</td>
<td>Location</td>
<td>0.20</td>
<td>0.16</td>
<td>1.22</td>
<td>0.224</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Random</td>
<td>Year</td>
<td>0.23</td>
<td>0.34</td>
<td>0.70</td>
<td>0.503</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Random</td>
<td>Residual</td>
<td>1.98</td>
<td>0.12</td>
<td>16.78</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>