Intraspecific predator inhibition, not a prey size refuge, enables oyster population persistence during predator outbreaks

H. S. Booth*, T. J. Pusack, J. W. White, C. D. Stallings, D. L. Kimbro

*Corresponding author: booth.ha@husky.neu.edu

Marine Ecology Progress Series 602:155–167 (2018)

Figure S1. Survey results showing annual variation in salinity across sites in the MRE prior to and during the experimental study. Data are averages (± SE) of monthly data points taken from April-September of 2011/2012 (red), 2015 (blue), and 2016 (yellow). (2011-2012 data show a previously calculated average value per site, which is why SE could not be included.)

1

Figure S2. Frequency of crown conch aggregations of different sizes at sites S1-S3 (the three southern sites at which conchs were present) during monthly surveys from March to August 2015 and 2016. The density of conchs in the 3.14 m² sample area (a 2 m diameter circle) is expressed in units of 0.25 m⁻² to match the scale of the experimental area.

Table S1. Maximum likelihood parameter estimates for functional response models.

Parameter	Estimate (standard deviation)
Holling Type I	, ,
a	0.0968 (0.0171)
Holling Type II	, , ,
a	0.0968 (0.109)
h	$9.121 \times 10^{-9} (0.111)$
Holling Type III	
a	0.0373 (0.0269)
h	0.0077 (0.0130)
k	1.5993 (0.6229)
Crowley-Martin	
a	0.9928 (3.8692)
h	$1.000 \times 10^{-10} (0.4199)$
С	3.6624 (9.7573)
Crowley-Martin Type III	
a	0.3823 (0.7501)
h	0.0077 (0.0097)
С	3.6624 (7.9156)
k	1.5993 (0.4158)
Beddington-DeAngelis	
a	$0.4663 (2.2543 \times 10^2)$
h	$1.000 \times 10^{-10} (15.4108)$
С	$3.6624 (1.9351 \times 10^3)$
Beddington-DeAngelis Type III	
а	62.3959 (12.8024)
h	5.1916(7.2087)
С	605.9819 (175.2609)
k	1.4686 (0.2625)
Hassell-Varley	
a	0.0971 (0.9912) 1.000 x 10 ⁻¹⁰ (1.0121)
h	$1.000 \times 10^{-10} (1.0121)$
m	0.8478 (4.9067)
Hassell-Varley Type III	
а	0.0982 (0.0463)
h	0.0044 (0.0199)
m	0.9000 (0.3320)
k	1.4170 (0.3168)
Ratio-dependent	
a	0.1114 (0.3075)
h	$1.000 \times 10^{-10} (0.3714)$
Ratio-dependent Type III	
a	0.1028 (0.0651)
h	0.0086 (0.0437)
k	1.4691 (0.5930)