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Supplement 1: Details of Seaweed Model Construction 
This supplement provides details of the methods used for seaweed model construction.  The 
code for C.f. spp. fragile and D. japonica was written in C++ and OpenGL. The model for S. 
latissima additionally used the Bullet Physics Software Developer’s Kit. 

 
Codium fragile spp. fragile Model 
C.f. spp. fragile has a binary branching structure with all thalli having a similar lengths and 
diameters, except for growth buds. A sample of C.f. spp. fragile was photographed in a tank 
before being laid out in a shallow dish for detailed measurements.  Its branching structure 
was fully characterized in a diagram with different levels of branches coded using a string of 
integers with 1 designating the root, 11 the left child, 12 right child, and so on (Figure S1_1).  
For each thallus, the length and the diameters at three locations (start, middle and end) were 
measured.  Terminal thalli were also noted. From these measurements, mean lengths, 
diameters as well as the standard deviations of these variables were computed at each level of 
the tree structure. For C.f. spp. fragile, a plane through a pair of branches is roughly at right 
angles to a plane through a pair of branches one level closer to the holdfast. We based 
estimates of branch angles from tank observations in each case, viewing the sample in a 
direction orthogonal to the branch plane. 

 

Figure S1_1. A sketch of the branching 
structure of a C.f. spp. fragile sample 
showing the coding scheme used. 
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The computer graphics model of C.f. spp. fragile is a simple recursive procedure with a 
binary branching. Individual thalli are modeled as curved tubes with hermit splines defining 
the central paths (see Figure 2a). Each thallus was capped with a hemisphere, although this 
was only visible for the terminii.    

The model had the following parameters.  

• Thallus length randomly determined between 1.0 and 1.5 cm.   
• Thallus diameter of 0.33 cm expanding to 0.43 cm where it bifurcates. 
• Child thalli, except for the terminal pairs had a 1:4 chance of being missing. 
• Branching angle: 33 deg. 
• Branching depth of 6 

 
Dasysiphonia japonica Model 
D. japonica has the branching structure illustrated in Figures 2 and S1_2. For the samples we 
examined, each thallus had up to 40 daughter thalli alternately branching to the left and right.  
The number of daughter branches was a function of the thallus length, although there was 
considerable variability in this parameter. In addition, there were many missing branches, 
particularly in the interior of the sample, near to its holdfast.   
Because of the very large number of thalli in this fine filamentous seaweed, a hybrid strategy 
was used to characterize it.  The first three levels of branches were all fully characterized in 
terms of the thallus length, diameter, number of sub-branches, and the spacing of sub-
branches. A sampling strategy was adopted for branching levels four and above.  To make 
these measurements a sample was spread out in a shallow dish and as far as possible it was 
untangled and flattened.  The sample was then photographed both as a whole and at 
magnified scales.  To characterize higher level branches, the sub-branches were randomly 
sampled, to obtain statistical estimates of length, number of sub-branches, etc.  At level 5 and 
above many branches consisted of a single ‘leaf’, while others had two, three or four more 
branching levels. 
The function 
 br = randProp(0.3)*(5.0*log(len*10.0) + 3.5); 

was used to generate the number of branches as the fuction of thallus length.  Where 
randProp returns a number uniformly distributed on the range [-0.7, 1.3].  The central panel 
of Figure 1 illustrates this function fitted to the measurement data. 

Like C.f. spp. fragile the computer graphics model of D. japonica was implemented using a 
recursive algorithm that called itself for each right or left daughter branch.  The diameter 
decreased by a factor of 0.8 at each level and the branch length decreased using a multiplier 
of 0.4.   

 

Figure S1_2.  Each branch of D. japonica can 
have more than 20 sub-branches, alternating to 
the left and right as shown.  However, there are 
also considerable irregularities such as missing 
branches.  Beyond level three irregularities 
increase. 
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Saccharina latissima Model 
The S. latissima model was constructed using a very different method.  S. latissima beds 
consist of many single bladed instances with each blade having the kind of structure 
illustrated in Figure S1_3.  Whereas other two models consisted of recursive algorithms 
where self-intersection could occur (in those cases it was felt that this would not greatly 
affect the way the space was structured) the way individual blades of S. latissima, divide up 
space would be radically changed if they were allowed to pass through one another.  Indeed, 
for S. latissima the structure of the space is to a large extent determined by the way the blades 
are packed and this is determined by forces on each blade exerted by neighboring blades. To 
accomplish this, a finite element model was developed, to both generate the morphology of S. 
latissima blades and to simulate the interactions between adjacent blades.   
 

 
Figure S1_3. A) The blades of S. latissima have a central flat portion and a wavy lateral 
edges due to higher growth rates at the periphery. B) A spring mesh was used to construct 
each blade. C) The rendering mesh for a single blade. 

 
A quadrat 50cm x 50cm x 50cm containing nine blades was photographed and measured in 
situ. Measurements were taken of holdfast locations, blade entry and exit points (if any) in 
relation to the quadrat boundaries. Blades were then harvested and measurements were made 
of each specimen’s length, width, thickness, and the frequency of the blade-edge ripples.  
These measurements were used to generate 2D models of the S. latissima specimens which 
approximated their profile shapes when laid out flat.   
The computer graphics model was implemented by starting with a mesh created by sampling 
the S. latissima profile shapes using a topological grid and simplifying the mesh so that 
vertices were at least 1 cm apart while preserving the profile shape. The meshes were used to 
create soft body objects via the Bullet Physics Software Developer’s Kit (SDK) 
[www.bulletphysics.org], where each mesh vertex was assigned an equal mass per-specimen 
and these vertex nodes were linked to all neighboring nodes within a geodesic distance of two 
using two-way spring constraints. The soft body models were then positioned and oriented 
within a virtual environment relative to a virtual quadrat so that they roughly matched the 
observed configurations.  The resting lengths of the node links were increased at and near the 
blade boundaries to achieve the characteristic rippling.  Additional constraints were imposed 
by using spring-like anchors to attach holdfasts and parts of the soft body models to their 
entry and/or exit points in the quadrat.  The simulation was allowed to run until the blades 
had reached a satisfactory conformation. 

 
  



 4 

Supplement 2: Implementation Details for Spherical Space Analysis 

This supplement provides implementation details for the efficient computation of 
inaccessible volume and area curves.  
In outline the algorithm consists of the following six step process. 

Step 1:  Construct 3D voxel model of macroalgae sample within a 3D voxel volume 
Step 2: From the outside-in employ a volume fill algorithm to fill all accessible parts  
(e.g. Feng & Soon 1998). 
Step 3: Re-draw and voxelize the model enlarged by r  
Step 4: Fill again from the outside this time marking the voxels in the outer shell in the 
enlarged model. 
Step 5: For every boundary voxel in the enlarged model, label within radius r using a kernel 
Step 6: Count the inaccessible volume and inaccessible area voxels 
 
Figure S2_1 illustrates the first 4 steps. The goal of steps 2, 3 and 4 is to identify voxels 
within radius r of the macrophyte model.  These are used for final filling step and since they 
typically make up less than 1% of the voxels in the volume, a more than 100 times speedup 
result. This process is repeated for many values of r to obtain inaccessible volume and 
inaccessible area curves.  These curves serve as empirical functions.   
 

 
Figure S2_1. Steps 1 through 4 as implemented for a C.f. spp. fragile model.  They all show 
the same slice through the voxel volume. Step 1: Following model capture. Step 2: Following 
volume fill. Blue represents water. Step 3: Following enlarged model capture. Step 4: 
Boundaries of enlarged model have been identified. 

 
What follows is a more detailed account of the same six steps. In this account we use r to 
denote the radius in centimeters of the theoretical spherical organism, and R to denote the 
radius in voxels of the organism. 
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Step 1: Construct 3D voxel model of macroalgae sample within a 3D voxel volume  
Memory is allocated for a three dimensional array with one byte per voxel. A volume 
600x600x600 bytes, for example is easily stored in the main memory of a modern desktop 
computer.  Individual voxel bits are used to label the results of operations. The voxel volume 
is padded on all six sides by R. 
Step 1 of the algorithm requires that a voxelized model of the macrophyte be constructed 
within a larger three dimensional voxel volume.  Unfortunately, standard computer graphics 
models produce three dimensional polygonal surfaces, not solid volumes. They give the 
appearance of three dimensional solids, but in fact are empty shells.  Although development 
of a code or a software layer can be used to construct  voxel-based models or polygonal 
surfaces within a 3D volume (e.g., Chandru et al. 1995), standard techniques from computer 
graphics cannot be employed. Consequently, we developed an alternative method that 
involved scanning a standard polygonal model using the near and far clipping planes to 
isolate slices through the model (see a standard computer graphics textbook such as 
(Marschner & Shirley 2015) for a discussion of projection and clipping). This process can be 
summarized as follows: 

An orthographic projection (i.e., a representation of the 3D object into 2D) is used, with the 
display window having the same dimensions in pixels as the desired dimensions of 
the image in voxels. 

The near and far clipping planes are set one voxel apart. This ensures that a single voxel-thick 
slice of the model will be displayed. 

The model is translated backwards, in one voxel steps, and the frame buffer is captured at 
each rendering with a black (zero) background.  Wherever the plant pixels appear bit 
1 of the voxel volume is set at the corresponding location in the volume (yellow in 
Figure S2_1). 

Because some of the polygons have a plane orthogonal to the screen and therefore are not 
rendered, a single scan of this type is insufficient.  The solution to this is to repeat the scans 
after rotating the model by 90 degrees. First about a vertical axis and next about a horizontal 
axis. The effect is a set of scans perpendicular to the X, Y and Z axes.  When all three scans 
are completed the result is a hole-free voxelation of the model surface.  Figure S2_1 (Step 1) 
illustrates with a single slice through the volume. 
Step 2: From the outside-in employ a volume fill algorithm to fill all accessible voxels  
A simple queue based breadth-first filling algorithm is used.  Bit 2 of each voxel byte is used 
to encode the fill (blue in Figure S2_1). It is essential that the seed voxel is outside of the 
boundaries of the hollow macrophyte model, otherwise the inside might be filled as well as 
the outside and the purpose is to differentiate plant tissue from water. 

Step 3: Re-draw and voxelize the model enlarged by r  
The macrophyte model is expanded by radius r, redrawn and captured using the same method 
as for Step 1. Bit 3 of each voxel byte is used to encode the enlarged model (purple in Figure 
S2_1). 
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Step 4: Fill again from the outside this time marking the voxels in the outer shell in the 
enlarged model 
This fill is a slight variation of that described in Step 2. Like Step 2 it fills up to the edge of 
the enlarged model (bit 4 is set for these voxels).  In addition, when the fill reaches voxels on 
the boundary of the enlarged model, bit 5 is set for those boundary voxels (these are colored 
white in Figure S2_1).  

Step 5: For every boundary voxel in the enlarged model, label within radius r using a 
kernel  
The goal of this step is to fill all voxels within radius r of the outer boundary voxels 
(previously set with bit 5). To make this more efficient a three dimensional array (kernel) is 
constructed containing voxels labeled as inside and outside of a sphere of radius r. However 
the effect is the same as if we simply test and label all voxels within radius r of each outer 
boundary voxel.  
The three dimensional array kernel has size 2R + 1 where R is the radius r expressed as 
voxels. Within this kernel we set all voxels <= r from the center voxel using bit 6, otherwise 
they are set to zero.  As mentioned previously, the main voxel volume is padded by the kernel 
radius and this minimizes the number of tests when applying the kernel. This is the most 
computationally intensive part of the algorithm when the radius is large. 

Step 6: Count the inaccessible volume and inaccessible area voxels  
The final step is accomplished by iterating over all voxels. If a voxel is labeled with bit 2 and 
not bit 6, it is counted as inaccessible volume.  If a voxel is labeled with bit 1 and is adjacent 
to a voxel labeled with bit 2 and not bit 6, it is counted as inaccessible surface area.  Figures 5 
and 6 show examples of the inaccessible volumes rendered in 3D for C.f. spp. fragile and D. 
japonica with different values of r. 

The code was implemented in C++ and Open GL and runs on any Windows PC. It can be 
made available to interested persons with the necessary computer expertise.  However, 
because it relies on custom computer graphics models of seaweeds which must be compiled 
into the code, it cannot be used by non-programmers. We are exploring ways of making it 
more readily available to non-programmers. 
 

LITERATURE CITED IN THE SUPPLEMENTS 
 
Chandru V, Manohar S, Prakash CE (1995) Voxel-based modeling for layered 
manufacturing. IEEE Comp Graph Appl 15: 42-47  
 
Feng L, Soon SH (1998) An effective 3D seed fill algorithm. Comput & Graph 22:641-644 
 
Marschner S, Shirley P (2015) Fundamentals of computer graphics. CRC Press 


