Relative importance of predatory versus non-predatory mortality for dominant copepod species in the northern Chilean (23°S) Humboldt Current System

Sonia Yáñez, Pamela Hidalgo*, Kam W. Tang

*Corresponding author: pahidalg@udec.cl

Marine Ecology Progress Series 630: 13–23 (2019)

Table S1: Formulations and Parameters for estimates Stage durations, predatory and non-predatory mortality rates.

Parameter	Symbol	Unit	Note
Stage duration	D	Days	Stage-specific D_i is indicated by subscript i ; $i+1$ for consecutive stages
Development time	a_i	Days	Stage-specific a_i is indicated by subscript i
Temperature	T	°C	Estimated from field conditions
Alpha	α	°C	Solved by nonlineal least square regression (<i>nls</i> function in R)
Beta	b	Dimensionless	
Molting rates	MR	d ⁻¹	Stage-specific MR is indicated by subscript <i>i</i>
Number of individuals in molting rate experiment	N	Dimensionless	Consecutive stages are indicated by subscripts i and $i+1$
Time	t	h	
Abundances	A	ind.m ⁻³	Used for Abundances ratio in Predatory mortality rates. Consecutive stages are indicated by subscripts i and $i+1$ and adults (A_q)
Predatory mortality rates	δ	d ⁻¹	Solved for iteratively
Proportions of individuals	π		π_1 y π_2 are proportions live and dead, respectively in stage i ; π_3 y π_4 are proportions live and dead, respectively in stage $i+1$
Carcasses turnover time	τ	days	

1

T 4 1 4 14		1-1						
Total mortality	mt	d ⁻¹						
Non-predatory mortality rates m d^{-1}								
Calculations of stage duration	Calculations of stage durations:							
Stage duration from Bèlehràdek	equation ((1935)						
$Di = a_i (T - \alpha)^b$				(1)				
MR method (Runge et al. 1985;	Kimmere	* & McKinnon 1987)						
$MR = (\frac{N_i + N_{i+1}}{N_i}) \times t$				(2)				
ai=1/MR				(3)				
Calculations from non-predate	ory morta	lity						
Carcasses turnover time (Elliott	et al., 201	0)						
$\tau = e^{\left(\frac{3,83}{4,166(1 - e^{-0,008T}) + 0,046D0} - 1,39\right)}$								
Predatory mortality rates (from	VLT equa	tions; Elliott and Tang	, 2011)					
$\frac{Ai}{Ai+1} = \frac{1 - \pi_1 e^{(-\delta iDi)} - \pi_2 e^{(-\delta i\tau)}}{\pi_1 e^{(-\delta iDi)} [1 - \pi_3 e^{(-\delta iDi+1)} - \pi_4 e^{(-\delta i\tau)}]}$								
$Al + 1 \pi_1 e^{(-6lDt)} [1 - \pi_3 e^{(-6lDt+1)} - \pi_4 e^{(-6lt)}]$								
$\frac{Ai}{Aq} = \frac{1 - \pi_1 e^{(-\delta i Di)} - \pi_2 e^{(-\delta i \tau)}}{\pi_1 e^{(-\delta i Di)} [1 - \pi_4 e^{(-\delta i \tau)}]}$								
Total mortality rates (from VLT equations; Elliott and Tang, 2011)								
Total mortality $(mt, d^{-1}) = Ai + 1 \left(\frac{e^{(\delta iDi)} - 1}{1 - e^{(\delta iDi + 1)}}\right)$								
Non-predatory mortality rates (Elliott and Tang, 2011; Tang and Elliott, 2014)								
Once predatory and total mortality rates had been calculated, non-predatory mortality rate is then calculated as the difference between total and predatory mortality rate: $m = mt - \delta$								

Table S2: Oceanographic variables in Mejillones Bay during 2010–2011.

Variable	2010			2011				
	Mean	Max.	Min.	SD	Mean	Max.	Min.	SD
Temperature at 10 m (°C)	13.39	14.37	12.62	0.72	13.19	14.10	12.63	0.38
Temperature at 50 m (°C)	14.55	15.52	13.09	0.78	14.55	15.52	13.31	0.77
Salinity at 10 m	34.75	34.83	34.62	0.07	34.78	34.83	34.77	0.02
Salinity at 50 m	34.80	34.85	34.75	0.03	34.80	34.83	34.75	0.03
Dissolved oxygen at 10 m (mL L ⁻¹)	2.86	5.42	1.22	1.30	0.98	3.02	0.00	0.99
Dissolved oxygen at 50 m (mL L ⁻¹)	0.47	3.02	0.00	0.98	3.37	1.24	5.42	1.22
Chlorophyll <i>a</i> at 10 m [mg m ⁻³]	24.03	102.0	0.60	31.22	4.19	10.08	0.93	2.85
Chlorophyll a at 50 m [mg m ⁻³]	25.20	116.8	0.02	36.21	1.56	9.98	0.04	2.74

Table S3: Results of two-factor General Linear Model (GLM) for stage durations as functions of months and developmental stages. * indicates significant difference at p < 0.05.

Variable			Stage dura	ition
		df	F	p
P. cf. indicus	Months	23	2.77	0.000*
	Stages	4	1.73	0.000*
A. tonsa	Months	23	1.18	0.000*
	Stages	4	2.41	0.000*
C. chilensis	Months	23	7.45	0.000*
	Stages	4	5.78	0.000*

Table S4: Results of General Linear Model (GLM) for oceanographic variables at the coastal upwelling zone of northern Chile during 2010–2011.

Variable		F	P
Chlorophyll a	Seasons	2.77	< 0.05
	Years	2.74	< 0.05
Ekman transport	Seasons	4.08	< 0.05
	Years	0.28	0.626
Salinity	Seasons	2.36	0.055
	Years	0.24	0.626
Dissolved oxygen	Seasons	6.63	< 0.05
	Years	0.82	0.374

Table S5: Results of two-factor General Linear Model (GLM) for predatory and non-predatory mortality rates (d^{-1}) as functions of months and developmental stages. * indicates significant difference at p < 0.05. Stations were treated as replicates.

Variable		Predatory mortality rates			Non- predatory mortality rates			
		df	F	p	df	F	P	
P. cf. indicus	Months	23	10.35	0.001*	23	2.18	0.140	
	Stages	4	21.68	0.000*	4	18.56	0.000*	
A. tonsa	Months	23	43.53	0.000*	23	5.69	0.000*	
	Stages	4	42.74	0.000*	5	12.97	0.000*	
C. chilensis	Months	23	11.31	0.001*	23	3.30	0.070	
	Stages	4	9.82	0.000*	4	4.21	0.002*	

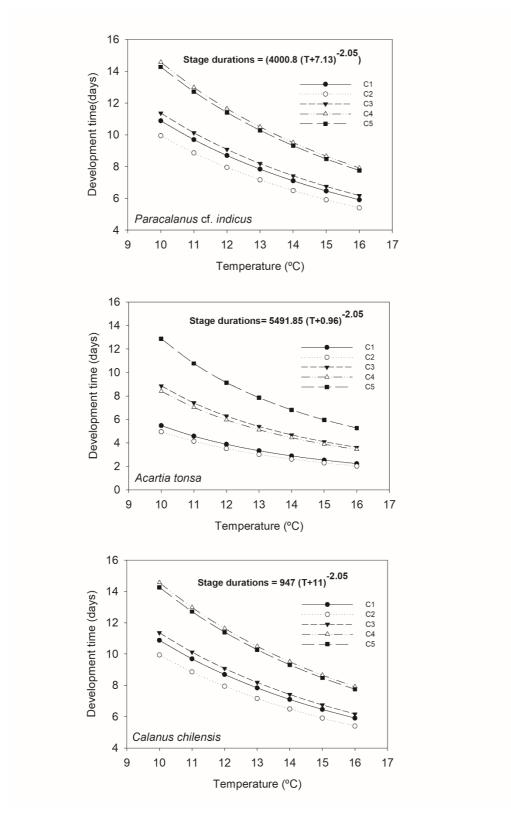


Figure S1. Copepodite stage duration for the three major copepod species as a function of temperature T (from Bèlehràdek equation) at Mejillones Bay.