Wastewater treatment for land-based aquaculture: improvements and value-adding alternatives in model systems from Australia

Sarah A. Castine^{1,4,*}, A. David McKinnon², Nicholas A. Paul³, Lindsay A. Trott², Rocky de Nys³

¹AIMS@JCU, Australian Institute of Marine Science and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia

²Australian Institute of Marine Science, Townsville MC, Queensland 4810, Australia

³School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia

⁴Present address: WorldFish, Jalan Batu Maung, 11960 Bayan Lepas, Penang, Malaysia

*Email: s.castine@cgiar.org

Aquaculture Environment Interactions 4: 285–300 (2013)

SUPPLEMENT

Table S1. Parameters, assumptions and calculations for the conceptual model (see Fig. 3 in the main text). ID numbers are used to explain the relationship (formula) between each parameter and for cross reference with Fig. 3. TSS: total suspended solids, TN: total nitrogen, FCR: food conversion ratio, TDN: total dissolved nitrogen, DNT: denitrification, DN: dissolved nitrogen, PON: particulate organic nitrogen, PRF: Pacific Reef Fisheries

Treatment section	Parameter	ID	Value	Unit	Model formula	Assumptions and additional information	Source
Farm inputs	Production ponds	1	100	ha		Moderate to large prawn farm	
& operation	Water usage	2	2000	million l yr ⁻¹		0.6% exchange d ⁻¹	PRF farm records
	Intake TSS load	3	22	t yr ⁻¹		TSS load is reported in dry mass	PRF environmental monitoring
	Intake TN load	4	1	t yr ⁻¹			PRF environmental monitoring
	Feed	5	2400	t yr ⁻¹	$16 \times (\text{ID1} \times 1.5)$	16 mt ha ⁻¹ crop ⁻¹ and 1.5 production cycles yr ⁻¹	PRF farm records
	TN in feed	6	167	t yr ⁻¹	$(\mathrm{ID5} \times 0.435) \times 0.16$	43.5% protein N:P factor of 6.25 (16%)	Mean (starter and grower) Ridley Aqua-Feed Diets Mariotti et al. (2008)
	Prawn yield	7	10	t ha ⁻¹ crop ⁻¹			PRF farm records

	Harvest	8	1500	t yr ⁻¹	$(\text{ID7} \times \text{ID1}) \times 1.5$	1.5 production cycles yr ⁻¹	
	TN in harvested prawn	9	58	t yr ⁻¹	$(\mathrm{ID8}\times0.24)\times0.16$	Prawn flesh 24% protein Standard N:P factor of 6.25 (16%)	PRF nutrition product label Mariotti et al. (2008)
	FCR	10	1.6		ID5/ID8		
	TSS discharge load	11	100	t yr ⁻¹	(50/1000) × ID2	TSS load is similar all year i.e. $50 \text{ mg } \Gamma^1$	PRF & S. Castine monitoring (n = 71), Jackson et al. (2004)
	TDN discharge load	12	2	t yr ⁻¹	$(1/1000) \times ID2$	TDN load is similar all year i.e 1 mg N l ⁻¹	S. Castine monitoring (n = 12)
	TN discharge load	13	7	t yr ⁻¹	$(\mathrm{ID}11 \times 0.05) + \mathrm{ID}12$	TSS are 5% N	Castine et al. (2013)
	N ₂ production	14	1	t yr ⁻¹	$((ID4 + ID6) - (ID9 + ID13)) \times 0.012$	Mean DNT efficiency of 1.2% All N in sludge is bioavailable	Burford & Longmore (2001)
Culture pond sludge	Sludge from culture ponds	15	3500	t yr ⁻¹	ID1 × 35	35 mt are removed from each pond	Preston et al. (2001)
	TN in sludge	16	7	t yr ⁻¹	$ID15 \times 0.002$	0.2% of the sludge is N	Burford et al. (1998)
Anaerobic pond	Anaerobic pond volume	17	64000	m^3	$(10\times80\times40)\times2$	Two ponds $10 \times 80 \times 40$ m (depth \times length \times width) Length: width ratio of 2:1	Alexiou & Mara (2003), Craggs et al. (2004) Craggs et al. (2008)
	Sludge generation from TSS settling	18	60	t yr ⁻¹	ID11 × 0.6	60% settlement rate	Jackson et al. (2003)
	2° produced	19	24	t yr ⁻¹	ID18 × 0.4	60% digested & 40% remaining	Craggs et al. (2008)
	TN in 2° sludge	20	0.05	t yr ⁻¹	$ID19 \times 0.002$	0.2% of the sludge is N	
	TSS remaining	21	40	t yr ⁻¹	$ID11 \times 0.4$	40% remaining if 60% settles	Jackson et al. (2003)
	TDN remaining	22	6	t yr ⁻¹	$ID18 \times 0.06 + ID12$	6% of settled material is mineralised and DN is released	Burford & Lorenzen (2004)
	TN remaining	23	8	t yr ⁻¹	$(ID21 \times 0.05) + ID22$	Negligible DNT TSS are 5% N	Castine et al. (2012) Castine et al. (2013)
	Biogas capture	24	233600	$m^3 yr^{-1}$	$(\mathrm{ID}17\times0.01)\times365$	Prawn AP function similarly to dairy AP i.e. 0.01 m ³ CH ₄ m ⁻³ d ⁻¹	Craggs et al. (2008)
Sand filter	Sand filter size	25	1	ha		Two beds $0.5 \times 100 \times 50$ m (depth × length × width)	Palmer (2010)
	TSS captured	26	28	t yr ⁻¹	$ID21 \times 0.7$	70% reduction in TSS	PRF environmental monitoring
	TSS remaining	27	12	t yr ⁻¹	ID21 – ID26		
	TDN remaining	28	6	t yr ⁻¹	$ID22 + (ID22 \times 0.11)$	11% increase in TDN	S. Castine monitoring
	TN remaining	29	7	t yr ⁻¹	$(ID27 \times 0.05) + ID28$	TSS are 5% N. Negligible DNT due to aerobic conditions	Castine et al. (2013)
Algal remediation	Surface area of algae pond	30	4	ha		2 × 3 ponds (1, 0.65, 0.35 ha) Area required to remove remaining TDN	Neori et al. (2003)

	Algal productivity	31	37	t ha ⁻¹ yr ⁻¹			Based conservatively on Neori et al. (2003) assuming a 5:1 wet:dry weight ratio.
	Algal production	32	146	t yr ⁻¹	ID30 × ID31		-
	Carbon removal	33	39	t yr ⁻¹	ID32 × 0.27	27% carbon	Bird et al. (2011)
	Nitrogen removal	34	6	t yr ⁻¹	ID32 × 0.04	4% nitrogen	Bird et al. (2011)
	TSS remaining	35	12	t yr ⁻¹	ID27	No change in TSS concentration	
	TDN remaining	36	0	t yr ⁻¹	ID28- ID34	Algae would be N limited	
	TN remaining	37	1	t yr ⁻¹	ID27 × 0.05	TSS are 5% N	Castine et al. (2013)
	CO ₂ sequestered	38	158	t yr ⁻¹	ID33 × (48/12)		
Constructed wetland	Constructed wetland	39	2	ha			Erler et al. (2008) Erler et al. (2010)
	TDN removal	40	100	%		High denitrification i.e. 965 μmol N m ⁻² h ⁻¹	Erler et al. (2008)
	TSS remaining	41	1	t yr ⁻¹	$ID35 - (ID35 \times 0.93)$	93% removal of PON (Erler et al. 2010), therefore assume 93% removal of TSS	Erler et al. (2010)
	TN remaining	42	0	t yr ⁻¹	ID41 × 0.05	TSS are 5% N	Castine et al. (2013)
	CO ₂ sequestered	43	8	t yr ⁻¹	ID39 × 4	4 t C ha ⁻¹ yr ⁻¹	Alongi et al. (2008)

LITERATURE CITED

- Alexiou GE, Mara DD (2003) Anaerobic waste stabilization pond: a low-cost contribution to a sustainable wastewater reuse cycle. Appl Biochem Biotechnol 109:241–252
- Alongi DM, Trott LA, Rachmansyah, Tirendi F, McKinnon AD, Undu MC (2008) Growth and development of mangrove forests overlying smothered coral reefs, Sulawesi and Sumatra, Indonesia. Mar Ecol Prog Ser 370:97–109
- Bird MI, Wurster CM, de Paula Silva PH, Bass AM, de Nys R (2011) Algal biochar—production and properties. Bioresour Technol 102:1886–1891
- Burford MA, Longmore AR (2001) High ammonium production from sediments in hypereutrophic shrimp ponds. Mar Ecol Prog Ser 224:187–195
- Burford MA, Lorenzen K (2004) Modelling nitrogen dynamics in intensive shrimp ponds: the role of sediment remineralization. Aquaculture 229:129–145
- Burford MA, Peterson EL, Baiano JCF, Preston NP (1998) Bacteria in shrimp pond sediments: their role in mineralizing nutrients and some suggested sampling strategies. Aquacult Res 29:843–849

- Castine SA, Erler DV, Trott LA, Paul NA, de Nys R, Eyre BD (2012) Denitrification and anammox in tropical aquaculture settlement ponds: an isotope tracer approach for evaluating N₂ production. PLoS ONE 7:e42810
- Castine SA, Paul NA, Magnusson M, Bird MI, de Nys R (2013) Algal bioproducts derived from suspended solids in intensive land-based aquaculture. Bioresour Technol 131:113–120
- Craggs RJ, Sukias JP, Tanner CT, Davies-Colley RJ (2004) Advanced pond system for dairy-farm effluent treatment. N Z J Agric Res 47:449–460
- Craggs R, Park J, Heubeck S (2008) Methane emissions from anaerobic ponds on a piggery and a dairy farm in New Zealand. Aust J Exp Agric 48:142–146
- Erler DV, Eyre BD, Davison L (2008) The contribution of anammox and denitrification to sediment N₂ production in a surface flow constructed wetland. Environ Sci Technol 42:9144–9150
- Erler DV, Eyre BD, Davidson L (2010) Temporal and spatial variability in the cycling of nitrogen within a constructed wetland: a whole-system stable-isotope-addition experiment. Limnol Oceanogr 55:1172–1187
- Jackson CJ, Preston N, Burford MA, Thompson PJ (2003) Managing the development of sustainable shrimp farming in Australia: the role of sedimentation ponds in treatment of farm discharge water. Aquaculture 226:23–34
- Jackson CJ, Preston N, Thompson PJ (2004) Intake and discharge nutrient loads at three intensive shrimp farms. Aquacult Res 35:1053–1061
- Mariotti F, Tomé D, Mirand PP (2008) Converting nitrogen into protein—beyond 6.25 and Jones' factors. Crit Rev Food Sci 48:177–184
- Neori A, Msuya FE, Shauli L, Schuenhoff A, Kopel F, Shpigel M (2003) A novel three-stage seaweed (*Ulva lactuca*) biofilter design for integrated mariculture. J Appl Phycol 15:543–553
- Palmer PJ (2010) Polychaete-assisted sand filters. Aquaculture 306:369–377
- Preston NP, Jackson CJ, Thompson P, Austin M, Burford MA, Rothlisberg P (2001) Prawn farm effluent: composition, origin and treatment. Project No. 95/162. Fisheries Research and Development Corporation, Cleveland, OH