Table S1

Organisations represented at the workshop, not all individuals returned questionnaires, but were involved in formulating research gap list.

Organisation	Sector	Country
Akvaplan-niva	Consultant	Norway
BMT	Consultant	UK
BMT Australia	Consultant	Australia
Callander McDowell	Consultant	UK
	Consultant	
	(Community	
CCN	Group)	UK
mts-cfd.com	Consultant	UK
	Government	
Institute of Marine Research	Research	Norway
Marine Sectland Science	Government	
Cooke Aswestikure Scotland Ltd	Research	
Cooke Aquaculture Scotland Ltd	Industry	UK
Keen Marine Ltd	Industry	UK
Mowi Scotland Ltd	Industry	UK
NeemCo Limited	Industry	UK
SAIC	Industry	UK
Scottish Sea Farms	Industry	UK
The Scottish Salmon Company	Industry	UK
Crown Estate Scotland	Policy	UK
JNCC	Policy	UK
Marine Scotland	Policy	UK
NatureScot	Policy	UK
Orkney Islands Council	Policy	UK
Scottish Environment Protection Agency (SEPA)	Policy	UK
Scottish Government	Policy	UK
Bangor University	University	UK
	Government	Faroe
Fiskaaling	Research	Islands
London School of Hygiene and Tropical Medicine and University of		
Edinburgh	University	UK
Natturustofa Vestfjarda	University	Iceland
Nigerian Institute for Oceanography and Marine Research	University	Nigeria
MASTS	University	UK
Scottish Association for Marine Science	University	UK
Scotland's Rural College	University	UK
Shetland UHI	University	UK
ULL	University	
National Autonomous University of Mexico	University	Mexico
University of Aberdeen	University	UK
University of Crete	University	Greece

University of Dar es Salaam	University	Tanzania
University of Stirling	University	UK
University of Strathclyde	University	UK
University of the Highlands and Islands	University	UK

Table S2

Full table of research gaps identified during workshop – ranked highest first.

Gaps in Highest Ranking order	Average	Average	Overall
	Immediac	Magnitud	average
	у	е	
A2.1 For on farm lice counts, higher quality and	4.53	4.63	4.58
frequency of data required along with better			
sharing of data			
B1.3 Better tools and methodology in place to help	4.43	4.43	4.43
make good choices for sea lice management			
E1.1 Investigate the impact on host i.e. what	4.31	4.48	4.40
threshold of lice in the environment will be deadly			
for host			
C1.7 We need a better understanding of migration	4.11	4.37	4.24
path of wild salmon/sea trout through new			
tracking studies.			
A2.6 Improved data sharing and provision must be	4.31	4.07	4.19
made a priority			
B2 Increased knowledge on lice survival from field	4.00	4.34	4.17
and experimental work for parameter estimation.			
E1.4 Better understanding critical lice thresholds	3.94	4.13	4.03
for fish, seasonal effects and interaction between			
sublethal lice impacts and other stressors			
A1.2 Increased knowledge on production of nauplii	3.97	4.04	4.01
E1.3 There are gaps on information on response to	3.91	4.09	4.00
high/low infestation for individual fish and			
populations. What information is needed to inform			
appropriate local management?			
B1.1 Efficient methods for getting good samples of	3.92	4.07	3.99
planktonic salmon lice are required			
B1.4 Development of appropriate sensitivity	3.77	4.13	3.95
analyses for coupled hydrodynamic – dispersal			
models			

A1.1 Increased knowledge on lice biology from field	3.98	3.90	3.94
and experimental work for parameter estimation.			
E1.5 Climate change impact on lice, predators, and	3.50	4.38	3.94
hosts should be investigated			
C1.2 Better empirical data on infective dose	3.84	3.99	3.92
(distribution of copepodids in water) including			
updating the parameter values for lice contact with			
hosts, and lice attachment rates, including data on			
lice age, water temperature.			
C1.6 Investigate how densities in water relate to	3.82	3.92	3.87
infection rates/pressures.			
E1.2 Better quantification of the infective dose	3.87	3.77	3.82
through data collection and numerical modelling is			
needed			
A.2.3 Investigate how the infectivity of sea lice to	3.80	3.79	3.79
host and attachment success is affected by			
environmental conditions such as temperature and			
salinity.			
B1.2 Increased knowledge of how environmental	3.76	3.82	3.79
parameters impact larval movement			
B1. 5 Improved hydrodynamic modelling for	3.78	3.73	3.76
complex environments			
C1.1 Attachment rate success parameters and	3.72	3.77	3.75
impact of temperature and salinity on viable egg			
release.			
A2.4 What is the swimming behaviour of sea lice in	3.57	3.74	3.66
the sea?			
B3.3 Development and standardisation of sampling	3.52	3.77	3.64
methods for planktonic stages is needed.			
C1.10 Investigate ways for farms to avoid cross	3.60	3.66	3.63
infecting.			
A2.5 Chalimus/planktonic counts: can counting be	3.72	3.49	3.60
improved to gain better insights?			
C1.9 Investigate the parasite attachment onto the	3.35	3.82	3.58
fish, in terms of the fishes behaviours.			
C1.5 Analysis of reinfections in pens is needed.	3.39	3.66	3.52
B3.9 Understanding lice behaviour in ocean	3.43	3.53	3.48
conditions should be prioritized			
B3.4 Better data streams are required for sources	3.52	3.42	3.47
of lice.			
B1.8 Increase environmental data provision needed	3.47	3.42	3.44
for hydrodynamic modelling validation			
C1.8 We should rethink degree of source control.	3.25	3.33	3.29

B3.7 Develop more new automated technology	3.04	3.53	3.29
with optical sensors to better sample lice in the			
environment.			
A2.2 Better data to identify source of sea lice and	3.02	3.44	3.23
information on what are the other sources (wild			
fish assumed to be less than 10%)			
B1.10 Understanding cross boundary lice transport	3.07	3.38	3.23
should be prioritized			
B3.11 Interactions of different species of hosts	3.02	3.33	3.18
salmonids and parasites sea lice needs further			
investigation			
B3.2 Development of genetic methods for	3.01	3.30	3.16
identification of larvae to support/replace current			
techniques			
D1 Develop general models to predict variation	3.05	3.26	3.15
among populations			
B1.9 Develop drifter tech to help hydrodynamic	2.93	3.28	3.11
model dispersal studies			
B1.7 Investigation of sources of stochasticity in	2.91	3.19	3.05
model and environmental data.			
B1.6 Consideration of data presentation of mapped	3.02	2.98	3.00
results from coupled hydrodynamic-dispersion			
modelling output			
C1.4 Investigating geographical difference in	2.92	3.05	2.99
exposures and infestation between countries			
B3.10 Understanding of potential differences	2.83	3.13	2.98
between populations in different locations			
B3.1 Development of methodologies for species	2.85	3.05	2.95
identification of larvae in situ is required.			
C1.11 How do lice sense fish? How important is this	2.61	3.15	2.88
behaviour and can therapies be developed to block			
this type of behaviour?			
C1.3 Develop understanding on how fish genetics	2.58	2.98	2.78
and feeds can impact exposure and infestation of			
new hosts			
B3.5 Differentiation between natural lice and	2.60	2.63	2.62
farmed derived lice levels needs investigation.			
B3.8 Better understanding of genetic differences in	2.51	2.54	2.53
various locations is required			
B3.6 Information on interactions between different	2.25	2.29	2.27
lice species should be collected			

Table S3

Minimum, maximum and mean scores and standard deviations for each of sector groups. a = immediacy of concern, b = magnitude of concern

	Industry		Consultants		University		Government		Policy	
	а	b	а	b	а	b	а	b	а	b
Min	1.00	1.00	2.33	2.50	2.00	2.00	2.00	1.80	1.75	1.50
score										
Max	5.00	5.00	5.00	5.00	4.46	4.42	5.00	5.00	5.00	5.00
score										
Mean	3.02	3.40	3.61	3.70	3.60	3.73	3.21	3.36	3.79	3.88
score										
Standard	1.06	1.11	0.68	0.69	0.50	0.45	0.82	0.76	0.73	0.78
deviatio										
n										