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1.  INTRODUCTION

A predicted and to some extent realized conse-
quence of global warming is the spread of shrub and
birch forests to the Arctic tundra and its low-alpine
fringes (e.g. Hofgaard et al. 2013). Recent research re-
sults show that shrub encroachment and tree invasion
on the northern Fennoscandian tundra have been
more rapid than previously expected (Kullman 2002,
Tømmervik et al. 2009), and these changes are mainly
human-driven and occurring concurrently with climatic
change (Tømmervik et al. 2009, Hofgaard et al. 2013).
Finnmarksvidda is Norway’s largest mountain plateau
and is located in the low alpine−northern boreal tran-
sition zone in northern Norway. This area therefore
might potentially under go considerable vegetation
changes in terms of in creased forest cover in a future

warming climate with summer temperatures as the
main driver. Finnmarksvidda is also the central area
for the indigenous Sámi people’s reindeer herds. The
Sámi people with their reindeer herds utilize the dif-
ferences in vegetation composition between the coast
and Finnmarksvidda situated further inland when
they move their herds according to the changing sea-
sons. In winter, reindeer graze the alpine lichen
heaths in the interior, and in spring, they move to the
coast and take advantage of the early greening, graz-
ing on herbs and grasses (Johansen & Karlsen 2005).
Shifts in the vegetation composition affect this finely
tuned reindeer grazing system (Tømmervik et al.
2012, Riseth et al. 2016). In particular, the spread of
birch and pine forests to the Arctic and alpine parts
will greatly influence the amount of lichen. During the
last decades, there has been evidence of altitudinal
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and latitudinal advances in forest limits in northern
Fennoscandia (Tømmervik et al. 2009, Aune et al.
2011, Van Bogaert et al. 2011, Hofgaard et al. 2013,
Franke et al. 2015). However, the pattern is not clear,
and these studies also indicate that it is difficult to
separate the climatic drivers that lie behind the forest
advances from other drivers, and the advances are
possibly more dependent on the grazing regime. Un-
derstanding the response of terrestrial ecosystems to
climatic warming is a challenging task because of the
complex interactions of drivers such as climate, distur-
bance and recruitment across the landscape. Hence,
the transition from alpine heaths to boreal forests is
potentially controlled by many drivers that include
climate, soil substrate changes, grazing, topography
and disturbance, and may be expressed as either
gradual or abrupt spatial changes (see e.g. Svein-
björnsson et al. 2002, Holtmeier & Broll 2007). An
 attempt using dynamic vegetation modelling (LPJ-
GUESS model) for the Barents Region (Wolf et al.
2008) overestimated the forest abundance for the
northern parts of the Kola Peninsula (Wolf et al. 2008).
This modelling was carried out using a very coarse
vegetation map (Olson Ecosystem map; spatial reso-
lution of 0.5° × 0.5° grid). Hence, by studying the
 modelling maps from this study for Finnmark county,
Norway, an overestimation of the forest abundance
also seems to be the case, since this part of the Barents
Region has more rugged and high mountainous
 terrain that includes steep barren mountains and gla-
ciers, where no tree can sprout and survive. One of
the most difficult challenges in projecting vegetation
dynamics from climate change is the development of
rules for vegetation responses to climate.

This study aims to create a bioclimatic-based model
to simulate potential future vegetation and forest dis-
tribution on Finnmarksvidda. This is done by uti -
lizing a bioclimatic study of the region (Karlsen et
al. 2005), where the vegetation types have been
grouped according to minimum summer temperature
demands and then used as a base for modelling
future vegetation, where a method for this has re -
cently been developed (Sjögren et al. 2015). Next, we
also discuss some possible impacts on the reindeer
winter grazing system.

2.  MATERIALS AND METHODS

2.1.  Study area and current treeline

Finnmarksvidda is situated in the low-alpine−
northern boreal transition ecotone between 68−70° N

and 22−26° E (Fig. 1). The municipalities Karasjok
(5453 km2) and Kautokeino (9708 km2) constitute
most of this plateau. The Precambrian bedrock of
Finnmarksvidda was reshaped by glacier activity dur-
ing the Pleistocene era and is covered with a moraine
layer, which forms a flat and gentle landscape with
nutrient-poor soils such as podzols and nanopodzol
(Lindström 1987). The current treeline is made up of
birch Betula pubescens and varies a lot across Finn-
marksvidda. It lies as low as 360 m altitude in the cen-
tral north and can reach up to 520 m altitude in the
southwestern parts, where it is common to find indi-
vidual trees even at 600 m altitude. However, most of-
ten, the treeline lies between 420 and 480 m altitude.
In most cases, on dry and nutrient-poor soil, the tree-
line gradually changes from open multi-stemmed
birch forest to dwarf birch heaths (Tømmervik et al.
2009). In Karasjok and Kautokeino, as much as 22 and
63% of the municipalities are between 400 and 600 m
altitude, respectively. Hence, large parts of Finn -
marks vidda are situated between the birch treeline
and the birch  forest line.

2.2.  Previous, present and future climate

Finnmarksvidda has a continental climate where
the meteorological stations in the villages Karasjok
and Kautokeino show a mean July temperature
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Fig. 1. An elevation model of the study area, Finnmarks -
vidda in northern Norway (inset: Fennoscandia). Current
tree line is formed by birch and is between 420 and 480 m 

altitude
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(standard normal 1961−1990) of 13.1 and 12.4°C,
respectively (Aune 1993). The mean annual precipi-
tation is 366 mm in Karasjok and 325 mm in Kau-
tokeino (Førland 1993), with about half of the precip-
itation falling between June and August. During the
last century, the Finnmarksvidda summer tempera-
ture has shown a trend of about 0.07°C increase per
decade (Vikhamar-Schuler et al. 2010, Hanssen-
Bauer et al. 2015). Precipitation has been variable,
with wet summers in the mid-1960s and in the last 2
decades. The length of the phenologically defined
growing season is in the range of 90−130 d (Karlsen
et al. 2008), without any clear trends during the last
decades (Høgda et al. 2013). The future scenarios for
Finnmarksvidda indicate an increase in summer
(June, July, August) temperature in the range of
2−5.5°C by the end of this century compared with the
1971−2000 period, depending on the scenario used
(Hanssen-Bauer et al. 2015). The prediction for sum-
mer precipitation (Hanssen-Bauer et al. 2015) is in
the range of 15−24% increase, while it is 13−14%
increase for winter precipitation (December, January,
February).

2.3.  Simulation of potential future forest
 distribution

Recently, a bioclimatic-based method was devel-
oped to model vegetation backwards in time (Sjö-
gren et al. 2015). In this study, we apply the method
to model potential future vegetation on Finnmarks -
vidda, with a focus on forest types. The starting point
of the modelling is the result from an extensive bio-
climatic study on Varangerhalvøya, northeast Nor-
way. On the peninsula, methods for using plant spe-
cies and vegetation types have been developed and
applied (Karlsen & Elvebakk 2003, Karlsen et al.
2005). The bioclimatic methods for climatic mapping
are based on the fact that most plant species and
plant communities both in the Arctic and adjacent
areas have to some extent a distribution pattern
 limited by growing season temperature. Varanger-
halvøya is a peninsula located approximately 150 km
east-northeast of Finnmarksvidda, and most of the
results from the peninsula can be transferred to the
study area. The vegetation on the peninsula was first
mapped using Landsat TM satellite data, and then
the mapped vegetation units were defined as tem-
perature indicators based on their total distribution
patterns and the temperature indicator value of
their high frequency and dominant species, as found
by relevé analysis. Vegetation units were grouped

according to their minimum temperature require-
ments in terms of mean July temperature. Vegetation
types were also grouped according to their habitat
preferences. In this study, we started with a Landsat
TM-based vegetation map from Finnmarksvidda
(Johansen & Karlsen 2007). This map was then com-
pared with vegetation units that had been previously
grouped according to their minimum temperature
requirements in terms of mean July temperature
mapped on Varangerhalvøya (Karlsen et al. 2005).
All mapped vegetation types on Finnmarksvidda,
except pine (Pinus sylvestris) forests and lichen
(Cladonia spp.) heaths, have related types on Var -
angerhalvøya. Mires were excluded from the study
due to their large variation in species composition
and fine mosaic structures that are not easily
detected by Landsat TM satellite data. The mapped
vegetation types on Finnmarksvidda were then
grouped according to their minimum temperature
preferences, with increments of 1°C difference in
mean July temperature. Also, the pine forest types
and lichen heaths were forced into temperature and
habitat groups, by judgement of species composition
found by literature studies (Wehberg 2007).

After the grouping of all vegetation types (except
for mires) had been carried out according to mini-
mum temperature and habitat preferences, we pro-
ceeded to the next step, which involved analysing
the altitude distribution of all vegetation types in
relation to the closest treeline today. The current
treeline is formed by birch and varies across the
study area. Based on the forest data supplied by
the Norwegian Mapping Authority (N50 data)
and modified by hyperclustering-based classification
(Hofgaard et al. 2013), polylines of the upper treeline
were extracted with the use of ArcGIS software. We
then compared the upper treeline with a terrain
model and created a gridline raster where each pixel
was assigned altitude information. Since these grid-
lines only covers small parts of the study area, we
interpolated the data (kriging) to create a raster that
covers the whole study area, where each pixel was
assigned a value corresponding to the altitude of the
closest upper treeline. To avoid outliers when deter-
mining the current upper limit of the different vege-
tation types, we used the height limit where 95% of
the area covered by each vegetation types occurred.
The final step was to simulate future vegetation
expected from increased July temperature. The sim-
ulation was performed using Python scripts in the
ArcGIS software. We assumed that a 1°C change
in July temperature would correspond to a 171 m
change in altitude of the treeline, based on a temper-
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ature change of 0.585°C per 100 m. We also assumed
that current temperature-dependent (thermophilous)
vegetation types would expand into colder areas
and replace less temperature-dependent vegetation
types with equal habitat preferences. For instance, a
blueberry-birch forest type (which requires approxi-
mately 10°C mean July temperature) will replace a
blueberry-crowberry alpine heath (which requires
approximately 9°C mean July temperature). Both
vegetation types occur on mesic habitats. In cases
with no climatic/habitat counterparts, the vegetation
types were reclassified to coarser units. The simula-
tion is regulated such that the replacement from one
group to another must not exceed a 171 m altitude
change per 1°C change in mean July temperature.
For instance, if a forest type at present reaches 100 m
below the current treeline, it will potentially reach
71 m above the current treeline with a 1°C increase
in mean July temperature. Finally, all mapped and
modelled units were judged according to winter rein-
deer grazing accessibility (cf. Johansen & Karlsen
2005, 2007).

3.  RESULTS

3.1.  Present vegetation cover

The present and potential future vegetation cover
on Finnmarksvidda is illustrated in Fig. 2. Table 1

shows the present and future cover of the modelled
vegetation types for Karasjok and Kautokeino munic-
ipalities respectively. Fig. 3 summarizes the changes
in forest distribution, and at present, forest covers
62% of the total area in Karasjok and 36% in Kau-
tokeino. In Karasjok, birch is the most common forest
type, but at lower altitudes, pine and mixed birch-
pine forests are also present. In Kautokeino, the
forests consist almost completely of birch. Alpine
heaths and meadows cover 25% in Karasjok and
43% in Kautokeino, while mires cover 10 and 16%
respectively. Vegetation types with high or medium
winter grazing accessibility covers 25% of the total
area in Karasjok and 40% in Kautokeino (Table 1).

3.2.  Potential future vegetation cover

The results of the simulation indicate potentially
dramatic changes in vegetation cover due to temper-
ature increase (Table 1, Figs. 2 & 3). In Karasjok,
 forest-covered areas will potentially increase from 62
to 84%. Such changes will cause a reduction in
heaths and meadows from 25 to only 3%. In particu-
lar, the pine forest and mixed pine-birch forests types
will increase in Karasjok. In Kautokeino, forested
areas will double from 36 to 74%, and correspond-
ingly, alpine heaths and meadows will be reduced
from 43% cover to 5%. The mixed pine-birch forest
will  increase from 1.5 to 18% cover. Lichen-rich
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Fig. 2. Left: current vegetation, redrawn from Johansen & Karlsen (2007). Right: scenario map showing simulated potential for-
est distribution at 1°C increase of July temperature
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crowberry (Empetrum hermaphroditum)-birch forest
and grass and herb-rich birch forest will also approx-
imately double their cover (Table 1). In total for
Karasjok and Kautokeino, forested areas will in -
crease by 4485 km2, which corresponds to a 70%
increase from 6900 km2 at present to a simulated
11 706 km2. This will also lead to a reduction of
mountain heaths from 4440 km2 at present to poten-
tially only 670 km2. These changes will result in a
dramatic decrease in vegetation types with high win-
ter grazing accessibility from 2386 km2 today to
potentially only 377 km2.  Vegetation types with low
winter grazing accessibility will increase in area by
3010 km2 (from 5601 to 8611 km2). The area covered
by vegetation types with medium winter grazing
accessibility will also increase from 2857 to 3366 km2.

4.  DISCUSSION

4.1.  Reliability of simulation of future forest
distribution

The modelling in this study indicates that a dra-
matic increase in the distribution of the forests on
Finnmarksvidda may take place with only a 1°C
increase in mean July temperature. This modelled
change will completely change all aspects of the eco-
systems on Finnmarksvidda, by having effects on
biodiversity, energy exchange, reindeer husbandry
and other land use. However, can this be true? It is
challenging to develop rules for vegetation response
to climate change. To simulate changes in tree cover
and vegetation, advanced models like the ALFRESCO
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Winter grazing Karasjok Kautokeino
accessibility Present +1°C Present +1°C
for reindeer km2 % km2 % km2 % km2 %

Pine forests Medium 205 3.8 697 12.8 184 1.9 321 3.3
Mixed pine-birch forest Low 549 10.1 1432 26.3 145 1.5 1768 18.2
Birch forest, open lichen-crowberry type Medium 484 8.9 353 6.5 1002 10.3 1947 20.1
Birch forest, dense lingonberry type Low 1070 19.6 474 8.7 1146 11.8 1060 10.9
Birch forest, mesic type, blueberry and Low 524 9.6 661 12.1 343 3.5 620 6.4
grass-dominated

Birch forest, herb and grass-dominated Low 562 10.3 979 18.0 686 7.1 1394 14.4
Exposed heaths High 336 6.2 30 0.6 1462 15.1 218 2.2
Lichen heaths High 24 0.4 26 0.5 564 5.8 103 1.1
Crowberry-dwarf birch heaths Medium 301 5.5 9 0.2 681 7.0 39 0.4
Fresh heaths and meadows Low 576 10.6 56 1.0 1037 10.7 167 1.7
Unvegetated/sparsely vegetated 105 1.9 17 0.3 391 4.0 5 0.1
Mires (not modelled) 556 10.2 556 10.2 1527 15.7 1527 15.7
Water 154 2.8 154 2.8 533 5.5 533 5.5

Total 5447 100.0 5447 100.0 9702 100.0 9702 100.0

Table 1. Current and simulated potential future cover of main vegetation units in Karasjok and Kautokeino municipalities. The
cover of current (year 2006) main vegetation units is extracted from Johansen & Karlsen (2007). The area of simulated potential 

future cover is based on 1°C increase of mean July temperature. Mire types are not included in the simulation

Fig. 3. Present and potential future (1°C increase of July temperature) forest distribution in Karasjok (left) and Kautokeino 
(right) municipalities, extracted from Table 1
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model in Alaska (Rupp et al. 2000a,b) have been
developed, which take into account several drivers
like temperature, precipitation, seed dispersal and
fire. Or for example the dynamic vegetation model-
ling framework LPJ-GUESS, which is designed to
 simulate global and regional dynamics and composi-
tion of vegetation in response to changes in climate,
atmospheric CO2 concentration and nitrogen deposi-
tion (Smith et al. 2001, 2014). On the other hand, an
example of a very simple model uses only a terrain
model and altitudinal replacement, assuming that
the current forest distribution is in equilibrium with
temperature and would change with increased sum-
mer temperature. Such a model is used for simulation
of future forest distribution in current alpine areas of
Sweden (Moen et al. 2004). A similar reasoning is
also common when inferring past temperatures from
pollen records in Fennoscandia (Seppä & Hicks
2006). Temperature as a determinant of tree distribu-
tions is a question of scale (e.g. Holtmeier & Broll
2005). The importance of temperature on a global
scale is clearly reflected in the gradual descent of the
treeline from its maximum altitudinal position in the
subtropics towards the pole. Grace et al. (2002) show
that temperature seems to limit forest growth more
significantly than it limits photosynthesis over the
temperature range 5−20°C. If we assume that growth
and reproduction of birch are controlled by tempera-
ture, an advance of the birch treeline would be pre-
dicted. Grace et al. (2002), Lucht et al. (2002) and
Hofgaard et al. (2013) have provided evidence using
remotely sensed data that suggest that this is occur-
ring. Our results presented in Figs. 2 & 3, showing
the simulated potential increase of forested areas in
the future, are in agreement with these authors. On a
local scale, hydrology/snow or rather, topography
and substrate texture governing hydrology, are prob-
ably the most decisive drivers determining the distri-
bution of plants. This study works on a regional scale
with pixel size on 30 m and hence drivers other than
temperature influence the forest distribution. In addi-
tion to temperature, our modelling also takes into
account available habitats. The model is thereby able
to simulate the future distribution of 5 main forest
types. This also ensures for instance that it is not pos-
sible for forest to grow into an area that is currently
without soil, since soil formation is a slow process in
the mountains. However, the role that trees them-
selves have on the environment is not taken into
account. Trees affect the physical and edaphic condi-
tions. New trees will change soil and hydrological
properties and thereby change the habitats. Trees
may also increase snow distribution and accumula-

tion, reduce wind, nutrient conditions and energy
exchange, since trees and shrubs reduce surface
albedo (e.g. Sveinbjörnsson et al. 2002, Holtmeier &
Broll 2007, de Wit et al. 2014). Still, it is reasonable to
believe that summer temperature is the main limiting
factor. Evidence that Finnmarksvidda was most likely
covered by forests in warmer periods during the
Holocene (Høeg 2000, Seppä & Hicks 2006, Huntley
et al. 2013) support this view.

There is already a general trend towards more
 forest cover on Finnmarksvidda. During the last
decades, the vegetation cover has changed dramati-
cally on Finnmarksvidda; lichen heaths have been
reduced and birch forest has increased (Tømmervik
et al. 2004, 2009, 2012, Johansen & Karlsen 2005,
2007, Hofgaard et al. 2013). This is mainly due
to changes in grazing pressure by reindeer. The
removal of ‘the barrier effect’ of the thick lichen
 coverage (Sedia & Ehrenfeld 2003) by heavy rein-
deer grazing and trampling provides open sites that
makes it easier for birch seeds to germinate and
sprout (Houle & Filion 2003, Tømmervik et al. 2004).
Eskelinen & Virtanen (2005) stated that natural graz-
ing by reindeer favours species colonization and
seedling emergence. This has in turn led to the
establishment of clusters of trees and subsequent
forests (Houle & Filion 2003, Tømmervik et al. 2004).
Furthermore, this has led to an elevation of the forest
upper boundary by the filling in of the gap between
the ‘old’ forest line and the treeline with forest
(Sveinbjörnsson et al. 2002, Tømmervik et al. 2004).
On the other hand, intense reindeer grazing can have
negative impacts and cause erosion, and seedling
establishment can be hampered by drought (e.g.
Holtmeier 2012). However, factors other than tem-
perature and grazing may have influenced these
changes. Increased precipitation, which has occurred
on Finnmarksvidda during the last few decades, is
also important (Tømmervik et al. 2009). Another
important disturbance factor influencing growth at
the treeline in the region is insect defoliation result-
ing from outbreaks of geometrid moths (Tenow et al.
2007, Jepsen et al. 2009). Such outbreaks may cause
treeline retreat. Finnmarksvidda experienced large
outbreaks in both 2004 and 2005 (Bjerke et al. 2014),
which may have influenced the treeline locally
(authors’ pers. obs., Holtmeier 2012). However, dis-
turbances such as moth outbreaks (Karlsen et al.
2013) and winter warming (Bokhorst et al. 2009,
Bjerke et al. 2014) might also lead to more rapid birch
forest growth as it may damage crowberry Em petrum
hermaphroditum, which possibly prevent birch seeds
germinating and sprouting (Nilsson & Zackrisson
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1992, Bråthen et al. 2010). In contrast to the described
effects of reindeer grazing on lichen pastures in the
winter grazing areas, the effects on herbs, willows
and trees in summer pasture areas are quite differ-
ent, as reindeer can stabilize and move the treeline
downwards (Cairns & Moen 2004, Cairns et al. 2007,
Tømmervik et al. 2009), and also promote the growth
of rare mountain plants (Olofsson & Oksanen 2005).
Prevailing disturbance regimes in the coastal parts of
Finnmark are to a large extent species-specific, but
directly or indirectly related to climate (Hofgaard et
al. 2013). Also, grazing by reindeer, moose, cows and
sheep might prevent shrubification and forest ad -
vance (Tømmervik et al. 2009, Hofgaard et al. 2013).
In particular, this is evident for birch forests on the
coast and the near-coast inland. However, at the
coast, the reduced number of cattle and sheep during
the last decades have increased the forest cover in
these areas (Fylkesmannen i Finnmark 2012, Hof-
gaard et al. 2013).

4.2.  Lagged response to climate change

We are then left with the question: when will the
modelled increase in forest distribution happen?
How long is the lagged response? Our modelling
indicates the direct magnitude of the change, but
reveals little about the rate and pattern of change.
Due to the flat landscape of Finnmarksvidda and the
large variation in the altitude of the treeline, the
main increase in forest distribution in our modelling
largely results from the filling in of gaps between the
existing trees and tree groups, and to a lesser extent
from the establishment of trees at sites above the
present tree limit. It is reasonable to believe that this
will happen gradually and that the altitudinal shift of
the treeline may lag behind climate change on a
timescale of decades. There will likely be local differ-
ences whereby changes will take place according to
variations in soil conditions, insect outbreaks, winter
warming effects, precipitation and grazing pressure.

Pine has a slower growth rate and dispersal rate
than birch and therefore responds on an even longer
timescale (Kellomäki & Kolström 1994). Spruce (Pica
abies) forests occur at nearby locations in northern
Finland. Possible future spruce forests were not in -
cluded in the modelling, since a northward advance
could be inhibited by factors other than summer tem-
perature, such as soil properties or other climatic fac-
tors (Siren 1955, Oksanen 1995, Sutinen et al. 2005).

In a synthesis study on tundra and treeline ecosys-
tems, Epstein et al. (2004) found that in the Seward

Peninsula in Alaska, most of the species present in
the shrub tundra communities above the treeline are
also present in the understory of forested areas, and
that the transition from tundra to forested vegetation
therefore typically involves gradual changes in tree
density and morphology. It is reasonable to believe
that a similar development occurs on Finnmarks -
vidda. Also from the Seward Peninsula study, it was
shown by simulation using the AFRESCO model that
under a 2°C warming scenario, there would be a time
lag of 70−290 yr for the doubling of the initial total
forest cover to take place (Rupp et al. 2000b). How-
ever, the simulation was performed for spruce  forest
and a 2°C increase, while the development of birch
forest in Finnmarksvidda might occur faster, perhaps
on a time frame of half a century. The relatively rapid
and ongoing increase of birch forest cover has also
been shown by Hofgaard et al. (2013). These analy-
ses revealed an average northward advance of birch
and pine latitudinal forest lines in northernmost Nor-
way since the early 20th century of 156 and 71 m yr−1,
respectively. This shows that birch has a more rapid
northbound advance on the tundra than pine. How-
ever, the more rapid advance for birch than pine
might partly be a result of extensive illegal logging,
especially at the latitudinal pine treeline, but also
at the latitudinal treeline, as discussed by Hofgaard
et al. (2013). A focus on factors limiting the advance
of certain species as well as the response of the
 forest−tundra ecotone to climate change are needed
in order to refine the output from more dynamic
regional and global vegetation models (e.g. Wolf et
al. 2008).

4.3.  Impacts of future forests on reindeer grazing
system

The modelling of future vegetation cover indicates
a dramatic change in forest distribution on Finn-
marksvidda, and major parts of the open lichen
heaths will change to woodland with less accessi -
bility for winter reindeer grazing. This will impact
the reindeer grazing system in several ways. Rein-
deer are adapted to utilize lichens as energy sources,
which is sufficient to ensure survival if enough
lichens are available. The establishment of forest on
previous lichen and dwarf shrub-dominated heaths
may increase snow accumulation and reduce wind
(Holtmeier & Broll 2007). This in turn typically tends
to create more compact types of snow in forests, mak-
ing penetrability of the snow pack, and hence graz-
ing due to lower accessibility, gradually more diffi-
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cult as the winter proceeds (Collins & Smith 1991,
Heggberget et al. 2002, Riseth et al. 2011). Therefore,
snow conditions are crucial in determining the avail-
ability of the lichens, and in particular, late-season
ice-crust formations may have strong effects on the
condition and survival of the animals (Moen 2008).
Snow hardness, snow depth and animal mobility are
also factors affecting reindeer selection of feeding
areas (Collins & Smith 1991). Greater snow depths
in forests makes digging of grazing hollows more
demanding and energy-consuming, and thus re -
quires relocation to a more open landscape (Sara
1999). Accordingly, birch expansion increases the
grazing pressure on the remaining open tundra and
sparsely populated pine and birch forest area, since
the relocation will need to be conducted at an earlier
stage of the winter. On the other hand, greater snow
depths might hinder grazing and promote lichen
growth, especially on heavily grazed areas in the
forests (Tømmervik et al. 2009).
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