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ABSTRACT: Baited cameras are often used for abundance estimation wherever alternative tech-
niques are precluded, e.g. in abyssal systems and areas such as reefs. This method has thus far used
models of the arrival process that are deterministic and, therefore, permit no estimate of precision.
Furthermore, errors due to multiple counting of fish and missing those not seen by the camera have
restricted the technique to using only the time of first arrival, leaving a lot of data redundant. Here,
we reformulate the arrival process using a stochastic model, which allows the precision of abundance
estimates to be quantified. Assuming a non-gregarious, cross-current-scavenging fish, we show that
prediction of abundance from first arrival time is extremely uncertain. Using example data, we show
that simple regression-based prediction from the initial (rising) slope of numbers at the bait gives
good precision, accepting certain assumptions. The most precise abundance estimates were obtained
by including the declining phase of the time series, using a simple model of departures, and taking
account of scavengers beyond the camera's view, using a hidden Markov model.
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INTRODUCTION

Estimates of organism abundance are fundamental for
marine ecology, but particularly difficult in many circum-
stances that preclude the intensive use of trawl sam-
pling, or acoustic survey, e.g. abyssal systems and areas
such as reefs, where trawls cannot run or would damage
the sea floor unacceptably. Priede & Merrett (1998)
recommended the deployment of autonomous lander
platforms equipped with bait and camera systems as a
relatively low-cost and low-impact alternative. In early
work, Priede et al. (1990) successfully fitted an empirical
curve to the time series of scavenger numbers present at
a bait on the sea floor; this was later used to estimate (the
assumed constant) staying time at bait (Henriques et al.
2002). Additionally, Priede & Merrett (1996) found an
empirical relationship A e 172, between the time to first
fish arrival, t;, and environmental fish density, A, deter-
mined independently by trawling. Following these dis-
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coveries, interpretation of statistics other than first arrival
time had not succeeded in predicting organism abun-
dance (Priede & Merrett 1998), and thus has not been
considered further.

More recent emphasis has been placed on using
mechanistic models of the arrival process (Priede &
Bagley 2000, Bailey & Priede 2002, Collins et al. 2002).
These models make assumptions about foraging be-
haviour and the spatial distribution of scavengers, as
well as the prevailing current, swimming speeds and
odour plume development (linear extension and diffu-
sive spread). The models fall into 2 main categories—
those assuming actively searching foragers (usually
fish) and those, following earlier work by Sainte-Marie
& Hargrave (1987), assuming that scavengers pas-
sively wait for signs of food arriving on a spreading
plume. In reality there is a continuum between these 2
extremes depending on the speed of searching relative
to passive diffusion. For passive scavengers, a descrip-
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tion of the plume is most important, but the crux of
models with active scavengers is accurate representa-
tion of their search strategy in relation to the current
(Bailey & Priede 2002). There is good evidence that
swimming in an approximately orthogonal direction to
the current is optimal (Dusenbery 1989, Vabo et al.
2004) and is commonly displayed by scavengers
(Priede et al. 1991, Bailey & Priede 2002). Conse-
quently, Bailey & Priede (2002) derived a deterministic
model of arrival rate for cross-current scavengers and
showed it was able to predict first arrival times, though
they found this measure was relatively insensitive to
abundance above about 100 ind. km2,

Biologists with time series data collected from baited
camera deployments are still faced with the question of
how to make the most effective and justifiable use of the
data in estimating organism abundance. This is not by
any means a simple question, as it depends on arrival
and departure statistics, scavenger behaviour through-
out the feeding cycle, and the limitations of the equip-
ment used. The aim of the present work was to provide
guidelines for estimating abundance from baited camera
data, specifically for fish scavengers that actively search,
rather than sit and wait, for odour plumes. We shall first
build a conceptual model of the processes determining
numbers of fish seen at the bait. Then we will assess 3
indirect measures of abundance using these counts, in
order of increasing use of the data. Each measure will be
demonstrated using example data taken from obser-
vations of Coryphaenoides armatus in the Nazaré
Canyon, west of Portugal (King 2006). The important
attributes of each method will be illustrated, showing its
strengths and weaknesses; in particular, we shall show
how the precision of the techniques increases as more
information is used. The ecological time scale to which
our analysis applies is that of the time series of camera
observations in a single deployment.

CONCEPTUAL MODEL

The number of fish attending the bait results from
a balance between arrivals and departures (Sainte-
Marie & Hargrave 1987). The arrival rate depends on
the number that are attracted to the bait, which is deter-
mined by the abundance of scavenger fish able to de-
tect the plume, and the proportion of them that respond
by swimming to the bait. We note here that the pres-
ence of competitors and predators near the bait can
affect the bait's attractiveness (see Lapointe & Saint-
Marie 1992), but such effects are separate from the
main estimation problem and we do not deal with them
further. Hence, we assume that fish that can detect the
bait will attend it. Even with this assumption, assessing
counts at the bait is complicated by the fact that fish

may arrive at the bait, circle it, perhaps exiting the cam-
era view and may repeatedly return to the bait before
finally leaving the area around the bait (bait zone) alto-
gether (Collins et al. 1999). These behaviours poten-
tially undermine efforts to estimate abundance (Yau et
al. 2001), but a common response has been to average
observed numbers of fish over several replications of
bait deployment; for example, Priede et al. (1994) took
the maximum mean number observed per block of 15
image frames as a best estimate of true numbers. We
hope to improve on such heuristics. To facilitate refer-
ence to calculations, the symbols used and their ranges
have been collated in Table 1.

Arrival rate is stochastically related to population
density. Departure rate depends on the number of fish
present at the bait and the fish behaviour (determining
residence time), and the observable fraction depends
on both movements local to the bait and the visual
scope of the camera. These processes are brought to-
gether in the conceptual model (Fig. 1), in which n(t) is
the expected (mean) number of fish that have been at-
tracted to the bait, but are not in the view of the camera
and m(t) is the expected number that are photo-
graphed. Thus, in our model, fish are attracted to the
bait zone at a stochastic rate p,(t) and switch between
this state and the 'in camera’ state at rate , finally de-
parting the bait zone at a stochastic rate of p4(f) (Fig. 1).

We make a simplifying assumption that the switch-
ing rate between in-camera and out-of-camera states is
symmetrical (individual fish in the region are equally
likely to become apparent as become obscure) and is
therefore {[n(t) - m(t)]. Conservation of numbers (fish
are neither created nor destroyed here) ensures that
after a time T:

n(T)+m(T) = [ [p, (1) -pa(t]dt (1)

and inspection of flow rates yields the following pair of
differential equations:

dn(t)

ar Pa(Mt)+Cm(t)—(pg +E)n(t) (2)
dm(t) ~
“ar Cln(t)- m(t)] 3)

The resulting time series of numbers at the bait has the
following general features: a delay phase before the first
arrival, a growth phase during which the arrival rate ex-
ceeds the departure rate, and a decay phase in which de-
partures exceed arrivals and, hence, a maximum in num-
bers when the arrival rate equals the departure rate
(these features are shown in Bailey & Priede 2002, their
Fig. 3). Superimposed on this gross pattern, the time se-
ries shows random rises and falls due to movements in
and out of the field of view, as well as the stochasticity of
arrival and departure processes. The above equations
serve to explain the processes involved, but they are con-
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Table 1. Symbols and their definitions, the quantities in the model, the dimensions,

their range and the values used here

“Unsupported by published data

Description Units Range Typical

A(t) Area from which fish will reach the bait in m? Az20 -
time t

o(t) A constant gathering speed terms in the m? 572 o>0 -
stochastic model

D Diffusion coefficient of fish 12st D>0 0.01°¢

J  Flux of fish fish12s?t  J>0 -

A Mean density of scavengers in the environ-  fish m™ A=0 1074
ment

A Constant in an empirical model of number fish s A=20 -
of fish observed

Y Shape parameter of the Weibull distribution® - y>0 -

B Scale parameter of the Weibull distribution® - B>0 -

0] Non-linear regression scaling constant - >0 1<p<3

q Quintile of a statistical distribution - - -

m(t) Expected number of fish in camera view fish m(t)=0 -

m(t) Observed number of fish in camera view fish m(t)=0 -

n(t) Expected number of fish hidden from the fish n(t)=0 -
camera

n(t) Hypothetically ‘observed’ number of hidden fish n(t)=0 -
fish

N(t) Expected number of fish arrived after time ¢ fish N()z0 -

u Expected rate of reorientation in foraging fish st u=0 1073

p Observable fraction of fish in the bait zone - O<p<1 -

pa(t) Rate of arrival of fish at the bait zone st pa>0 -

pa(t) Rate of departure of fish at the bait zone = pa=0 -

T A finite time after deployment of the baited S T>0 -
camera

T Time of arrival of first fish S 7,>0 103

T* Time when observed number of fish becomes S >0 10°
maximum

u Speed of the current ms! u>0 0.05

v Fish swimming speed against the current ms! v>0 0.05
(upstream)

w  Fish searching speed perpendicular to the ms! w>0 0.05
current

x(t) Total number of fish in the bait zone fish x(t)>0 -

z Estimate of parameter controlling rate of fish 572 - -
change of py(t)

4 Switching rate in and out of camera view st =0 -

?As B increases, the PDF of the distribution lowers and spreads (see Johnson et al.

1994)
PAs yincreases, the PDF of the distribution becomes more symmetrical (Johnson
et al. 1994)

Out of camera view

pa(A,t) Switching
» it |t ——>
Arrival rate 4
pa(t)

Departure rate
from the bait area

In camera

view

Fig. 1. Poisson processes of the ‘bait zone' governing the number of fish seen by the
camera at time t: p, is the true arrival rate, { is the rate of switching in and out
of view of the camera and p,is the true departure rate

tinuous approximations. Next, we de-
velop stochastic models that explicitly
count individuals because the num-
bers involved are small.

MODELS OF FISH ARRIVAL RATES

Two models will be considered:
the first assumes that fish swim with
constant velocity across the current
(geometric model) and the second
allows for random direction switch-
ing (diffusion model). The models
give different predictions on how
the number of arriving fish increases
with time; empirical estimation of this
rate will later be used to select the
model which best fits a time series of
fish arrivals.

Geometric model of fish arrivals.
We assume a constant velocity water
current, with fish searching ortho-
gonally (cross-current) for odour
plumes. Given that fish searching
speed is likely to be much greater
than the odour diffusion rate (see
Yen et al. 1998, Webster & Weiss-
burg 2001), diffusive spreading has
a negligible effect on arrival times.
This greatly simplifies the problem
by reducing the plume to a 1-dimen-
sional target extending in space at
the same rate (and in the same direc-
tion) as the current.

We use a coordinate system with
the bait as the origin, with the
positive y-direction defined by the
current direction as it flows with
constant speed u. Fish move perpen-
dicularly to the current (the x-axis)
at a constant speed w; on average,
half of them move in the positive x-
direction and the other half move in
the negative x-direction. Once they
encounter the plume, they swim up
it at a speed v over the substrate by
swimming faster than the opposing
current. We also assume that fish act
independently of one another, are
equivalent in all respects, swim with
constant velocity (except where
stated) and that there is only 1
attractant (these fish cannot be dis-
tracted).
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At time O the bait is placed at coordinates (0,0). At
time t, € [0, T], the bait can be detected in the set {(x,y):
x =0, 0 £ y £ ut}—this defines the plume as a line
extending in the y-direction at a constant rate u. Since
fish can swim both left and right across the current, we
assume half of them do each, and, since the system is
symmetrical about the plume'’s axis, we can simplify by
considering only 1 side (halving the swept area), and
assuming 1 swimming direction (doubling the fish
interceptions), cancelling factors of 2, this is equivalent
to the complete system. A fish starting at position (x,y),
x 20, y 20, swimming to the left (direction —x), can
reach the plume at time x/w and the bait at time x/w +
y/v. Thus, for the fish to arrive at the bait, the following
must be true: x/w+ y/v < Tor y < vI - vx/w. Since the
fish crosses the line x = 0 at time x/w;, it will only detect
the bait plume if x/w 2> y/u or y < ux/w. Therefore,
between time 0 and time T the fish arriving at the bait
must have been in the following triangular region at
time 0:

{(xy):x20,y20, y<vT - vx/w, y < ux/w}

which we call the ‘swept area’ A(T). Fig. 2 illustrates
the geometry of this argument, and Fig. 3 shows how
the 3 boundaries defining the swept area are used to
calculate its size for a given value of T:

1 wT

2
_1 uvwT - T2
2 (u+v)

- 2u+v)

A(T) (4)

defining a constant o.

If the initial configuration of fish in the plane is a
Poisson process with intensity A (meaning a random
2-dimensional distribution of mean density A), then the

A ’
\ /
u N pd
f Fish further from \ " Fish nearer the
the plume axis < plume axis than
] . \ / e .
| than this line will \ s \ this line will pass
| not reach the \ 7 before the plume
| bait by time T reaches their
| y-ordinate
|
|
|
|
|
|
|
|
|
|
|

< —

:‘\ Bait

Plume axis

X —p

Fig. 2. Explanation of 'swept area’ A(T) for fish swimming
right to left searching for a plume. Those within the shaded
triangle will meet the plume and swim to the bait all within
time T. If they are too near the plume axis, they will swim past
it before the plume extends to their y-ordinate; if they are too
far from the plume axis, they will not reach it in time to have
swum to the bait before the deadline of T seconds

w: swimming velocity cross current

c v: swimming velocity upstream WTuT)
g u: velocity of current
3 y = ux/w
g vTA
ks
c
o [vwT/(u+v),uvT/(u+v)]
i3] i
Y R
© AT TN Y =T - ww
= A

Bait wT '

X
Fig. 3. Calculation of swept area: fish swim past the plume
axis if y > ux/w and fail to reach the bait in time Tif y > vT -
vx/w. These 2 inequalities, along with the positive yrule: y> 0,
define the swept area triangle—the solutions to their corre-
sponding equations give us the triangle's dimensions, and
hence, the area

number of fish expected to have arrived at time t is
Poisson distributed with an expected value (denoted
by E[N;]:

E[N,] = \at? ()

Correspondingly, the time of arrival of each fish,
marked on a time line, is a Poisson process of intensity:
44 (6)

dt

Assuming continuous linear growth of the plume,
this intensity will grow linearly in time. Ultimately, the
plume will be diluted below the detection threshold of
searching fish, from this point the quadratic scaling
would be replaced by a linear extrapolation giving a
constant arrival rate. However, for simplicity we
assume that at least until the first fish arrives, the
plume is not truncated. Since Lokkeborg et al. (1995)
found sablefish Anoplopoma fimbria to be able to
detect food odour plumes over 1000s of metres and
since dispersion is likely to be small over this scale
(Zimmer-Faust et al. 1995), we expect the assumption
to be reasonable over the time scale of several 10s of
hours, which is typical of bait deployments.

Diffusion model of fish arrivals. Relaxing the as-
sumption that fish swim with constant velocity forever,
we allow them to occasionally turn in the opposite
direction during cross-current foraging. We call this
behaviour 'reorientation’ and assume that it occurs at
independently random times, thus constituting a Pois-
son process for the individual fish. We denote the
expected rate of reorientation as U and assume it to be
constant.

When the time since deployment of the bait is much
shorter than 1/u, we do not need to take reorientations
into account, but, when it is much larger, the move-
ment of the fish can be approximated with Brownian
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motion (Okubo 1980), characterised by an equivalent
diffusivity, D = w?2u (since with orthogonal searching,
this is effectively a 1-dimensional system).

In this diffusive model, we can estimate the flux of
fish to the bait by first considering the diffusion prob-
lem C = DV2C with the absorbing boundary C(0,t) = 0,
far field C(eo,t) = C., and initial condition C(x,0) = C..
In this partial differential equation system, used to
define diffusion, Crepresents the concentration of par-
ticles (in our case fish) and D can be interpreted as the
rate at which they spread from a point (V is the Del
operator—representing multi-dimensional differentia-
tion). The solution of this system is well known (e.g.
Okubo 1980):

C(x,t) = C.erf[x/(2/Dt)] 7

(in which erf[z] is the ‘error function’, familiar in math-
ematical physics—it is twice the integral of the Gauss-
ian distribution with 0 mean and variance Y%, from zero
to z). From the solution, we find the flux to the origin
from the positive half axis:

J(t) = DVC(0,t) = C.\D/mt (8)

which again follows textbook mathematics.

Now we apply this basic result to the present problem:
for a fish to arrive at the bait at time ¢, it must have had
an initial y-coordinate such that y/u + y/v <t, since first
the plume must reach distance y, and the fish needs
time to reach the bait after encountering the plume.
It must have arrived at the plume a time interval
t— y/u-y/v after the plume reached an extension of y.
Integrating over all such y, we find the instantaneous
flux of fish to the bait at time t:

J-t/(1/u+1/V

'\2/D7% dy = [ Z4MD7% (9

1 vu
Tt—y/lu—y/v viu
This shows that the flux to the bait scales with %,
which is the expected scaling for a diffusive process.
Eq. (9) can be interpreted in terms of a ‘swept area’,
analogous to the A(t) we had before. It states that the
expected number of fish arriving at the bait no later
than tis the expected number of fish contained within
a parabolic region defined by the speed constants
(viu,w) and D. The area of this parabolic region scales
as t/t.

Distribution of first arrival times. First arrival times
are the standard measure for estimating abundance
using deterministic models (following Priede & Bagley
2000). Here, we derive the stochastic equivalent and,
from this, determine the theoretical precision of abun-
dance estimates based on first arrival time, assuming
that the camera accurately records the true arrival time
of the first fish. The following analysis applies for both
the geometric and diffusion models, and more gener-
ally.

We use the stochastic variable n(t) to describe the
observed number of fish at time t, which is Poisson dis-
tributed with expectation E[n(t)] = n(t) = AA(t), so n(t)
denotes a sort of ‘average’ number we expect to see at
time t. Let 11 be the time of arrival of the first fish. This
will occur after time ¢t only if n(¢) = 0, and from the
definition of the Poisson distribution the probability of
this is:

P(t; > t) = P[n(t) = 0] = exp[-LA(?)] (10)

We find the probability density function (PDF) of t; by
differentiating with respect to time:

P(u,€[tt+dt])/dt = MdA/dt) exp[-AA(1)]  (11)

If we now let A(t) = at? (allowing for the geometric,
diffusion, and more general models of arrivals), then
Eq. (11) gives the PDF:

P(ty) = yoht[ 'exp(-hot)) (12)

We recognise this density of t; to be that of a Weibull
distribution (which is the subject of Chapter 21 in
Johnson et al. 1994), with a shape parameter of y and
scale parameter B = 1/(Aot)'/".

Note that in the geometric model described above,
A(f) is quadratic in time (assuming the plume does not
truncate), so y = 2, but using the more flexible diffusion
model, the scaling is with \/t, giving the value of y = %
in Eq. (12).

We need to estimate the Weibull scale parameter 8
as it provides the means for estimating A from 1; via
Eq. (12). Irrespective of the shape parameter (so for
any model of arrivals founded on the assumption of a
Poisson distribution of fish in the environment), the
maximum-likelihood estimator for f is B =T, (Johnson
et al. 1994, p. 656), so the variance of the estimator is
equal to the variance of the first arrival time, which is
known from the properties of the Weibull distribution:

2
=)
where I'(z) is the Gamma function (a generalisation of
the factorial).

We will now determine the precision of estimating
fish abundance (A) from first arrival times, irrespective
of the precise model used for the arrival process.

Assuming o is known (i.e. the speeds of fish and cur-
rent), we obtain an estimator for A, using the definition
of the scale parameter above:

VIBl = V[r,] = pYI(1+ (13)

1

b= (14

In this, BV is distributed as t,¥ which is an exponential
distribution with mean 3 (Johnson et al. 1994). oA must
be distributed the same as 1/BY, which is the reciprocal
of an exponential distribution, the mean of which is f.
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The exponential distribution is a special case of a
Gamma distribution, having a shape parameter a = 1.
A classic result is that if any variable X follows a
Gamma distribution with any shape parameter a, then
its reciprocal Y = 1/X follows an inverse Gamma distri-
bution with shape parameter a. Unfortunately, it is also
well known that the inverse Gamma distribution hav-
ing shape parameter a = 1 has no finite expectation
(implying that it cannot be predicted). Strictly, E[Y] < e
if @ > 1, so our case is right at the limit of expectations
existing. Because V[Y] < «, only if a > 2, the present
problem is deep within the range having infinite vari-
ance, so no sample of 1, can yield an estimate A with
non-zero certainty. In practice, the initial disturbing
effect of the lander arriving on the bottom makes the
assumption of Poisson arrivals invalid for a short time
from the start, where an immediate visit from a fish is
practically ruled out. This ‘smoothes’ the extreme con-
clusion of the statistical theory somewhat. Excepting
the initial ‘disturbance transient’, the assumed Poisson
distribution is readily justified as being the standard
null model (minimum assumptions) for any random
distribution in space. Thus, using well-known and
long-established probability theory, we have shown
that for a range of reasonable arrival models, assuming
fish do not show social interactions and are not dis-
tracted from the bait, then the time of first arrival is a
very poor predictor of their abundance.

REGRESSION MODEL

Using the rising phase of the time series. Next we
examine a regression on the rising phase of the time
series to estimate arrival rate and thereby abundance.

For practical purposes, we define the rising phase as
the region from ¢ = 0 to the time of arrival of the fish
causing the maximum number to be observed together
(which we label as t*). The start of the time series is
chosen because fish are potentially arriving from ¢ = 0.
The time when numbers reach maximum will not usu-
ally be the exact end of the rising phase, because the
trend in expected numbers is superimposed with sto-
chastic variation. However, since the distribution of the
resulting error is approximately symmetric about the
expected number-maximum, the observed maximum
is close to an unbiased estimator.

The analysis assumes that observations are indepen-
dent and that departure rate is zero during the rising
phase (pg; = 0 in ¢t = 0, t*) and that all fish attracted
to the bait are seen; hence, arrivals are measured by
m, = m(t) (see Fig. 1; error of these assumptions will
underestimate abundance).

Non-linear regression, describing the model m; =
At®, accommodates both the geometric cross-current

forager (where A =Ac. and ¢ = 2) and the diffusion
approximation (where A = 240 /D/t and ¢ = %), but
also permits a purely empirical estimate of A and ¢,
for which we have no theoretical explanation (it may
involve complicating factors such as turbulence of
the plume). This empirical fit should be included to
demonstrate the plausibility (or otherwise) of the the-
oretically justifiable options. Thus, we have 3 regres-
sion models to compare (linear in the parameter in
the first 2 cases and non-linear in the last case), sum-
marised below.

Model 1: E[m;] = At* :linear geometry
Model 2: E[m,] = At¥? : diffusion limit in fish behaviour
Model 3: E[m,] = At® :empirical model

Regression predictions. Here, we show the method
in use on examplary data taken from observations of
Coryphaenoides armatus in the Nazaré Canyon, west
of Portugal (King 2006). Normal regression assumes
that errors are approximately normally distributed
with zero mean and equal variances. Inspection of the
residuals (using residual and normal quantile plots,
Fig. 4) for the examplary data does not support this
assumption, especially as the variance can be seen
increasing with fitted values.

Conversely, our theoretical models of arrival assume
that m; is Poisson distributed—chosen as it is a neutral
model (zero information) for the spatial distribution of
fish. To test this, we transformed the data prior to
regression. Assuming that m; follows a Poisson distrib-
ution with mean value At®, then Jym, + |(m, +1) will
approximate a normal distribution (especially for small
values of At?, as here), with an approximate mean
value of 2yAt® and unit variance (Freeman & Tukey
1950).

The normal quantile plots on transformed data (Fig. 5)
provide statistical justification for these Poisson as-
sumptions. Fitting the transformed models gave the
results provided in Table 2.

The fitting of these models to the data is shown in
Fig. 6, which indicates that both Models 2 and 3 have
been very successful, the deviance values (Table 2)
confirm this. It is impossible to distinguish Models 2
and 3 in the fitting of plots, because the empirical fit
for ¢ (Model 3) gave an estimate very close to %, which

Table 2. Results from regression models, assuming Jm; +
Vym; +1 normally distributed around twice the square root of
the estimated mean. Deviance is the residual sum of squares

2JA  SE@2JA) ¢ SE(¢) Deviance
Model 1 0.10577 0.00272 - - 32.23
Model 2 0.28474 0.00613 - 22.85

Model 3 0.29025 0.06177 1.4902 0.1084 22.84
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This method is easy to implement:
Models 1 and 2 are simply linear regres-
sions. Model 3 is non-linear in the ¢ para-
meter, adding a slight complication, but it
is still simple to implement with standard
statistical software.

HIDDEN MARKOV MODEL

Using the whole time series. The maxi-

mum use of information theoretically
yields the highest achievable precision. In
this section we will show how the whole
time series can be analysed, using a model
of departures from the bait of fish both
seen and unseen by the camera.
Referring to Fig. 1, we regard n(t) as
hidden and the p and { terms as para-
meters that can be estimated using the
statistical technique of a hidden Markov
model (HMM) (Cappé et al. 2005)—now

commonly used in automatic speech

recognition. With this method, the system
represented by Fig. 1 is assumed to be
a 2-state Markov process (m, n;), with
parameters estimated from m; (again,
using the non-italic font to denote ob-
served counts). The 'hidden state’ is the
number of fish at the bait, but outside
the camera view (n;).

We make the simplifying assumption
: that fish move among visible and hidden

T T
0 2 4 6 8 10 12 -2 -1 0

Fig. 4. Diagnostic plots of models for untransformed data. (A) Model 1, (B)
Model 2 and (C) Model 3. Left column: residuals against fitted values for the 3
models. Right column: quantile plots (empirical quantiles of residuals against
quantiles of the standard normal distribution), reference lines pass through

the first and third quartiles

was the value assumed in Model 2. The residual plots
(Fig. 5) support these conclusions, showing good
compliance with the statistical assumptions. On this
basis, we select Model 2 (the diffusive swimming
fish), with transformation of Poisson distributed data,
as the best model for the rising phase of the time series.
Using the test data, we obtain a value for A of 0.02027
(95 % confidence intervals: 0.01859 and 0.02202). This
can be translated into a 95 % confidence interval for A
(the fish abundance) using a suitable estimate of D in
A =L 4\D/r. The dependence on an unknown para-
meter D is a nuisance, which we will see again in the
next section. There is a clear need for estimating
it from observations of the behaviour of relevant fish
species.

2 states between camera shots, so the ob-
served m; at each time step is a sample
from a binomial distribution with number
parameter x; = n; + m; and some constant
probability parameter p. This p corre-
sponds to the visible fraction of the fish at
the bait.

Since the diffusive model of arrivals (Eq. 9) was the
best supported by regression in the previous section, it
is chosen to represent arrivals here, so we assume
pa(Mt) = pat (note tilde notation for empirically esti-
mated parameters). We aim to estimate the prefactor
Par to derive from it a fish abundance estimate A using
Eq. (9).

Now a model for departures is needed. The mean
flux away from the bait zone at time ¢ is proportional to
the number of fish present at . To take account of the
behaviour of fish towards a depleting bait, we define
the departure rate p, as follows. The probability of any
fish leaving in a short time intervalt to t + his set to pgh
(approximated to first order in h), which we assume to
be a linear function of time. However, we continue
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—5] (This moment method is probably very
close to a maximum-likelihood estimate,
and reduces computational complexity
significantly). We then tabulate the fit, i.e.
the profile likelihood, for each combina-
tion of z and p. The parameter estimate is
then chosen as that parameter combina-
tion which results in the largest profile
likelihood, i.e. we tune the estimator to
optimise predictions of the number of fish

in view at the next image frame. Further
details are given in Appendix 1.

Predictions. Fig. 7 shows the negative
log-likelihood (often shortened to likeli-
hood) of parameters z and p, The optimal
estimate, defining the minimum of this
function, is at z=0.0011 min~2 and p = 0.33.
An approximate 95 % confidence region is
given by parameter values for which the
likelihood does not exceed the minimum
value by >2q, where qis the 95 % quantile
in a chi-squared distribution with the num-

ber of degrees of freedom equal to the
number of estimated parameters. In the

o| figure, this region is inside the 1= 455 con-
“| tour line.

Note that this predicts about one-third of
the fish present in the bait zone are visible
to the camera. The predicted value of z in
this case, means that a fish in the bait zone
at peak numbers time t* will stay for at
least 34 further minutes with 50 % proba-
bility (found from solving exp [—IOT pa(t)dt] =
0.5). Fish that arrive later will tend to stay
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Fig. 5. Diagnostic plots of models for transformed data, assuming a Poisson

arrival process. (A to C) Panels as in Fig. 4

with the assumption that no fish depart before the time
of the peak in observed fish numbers (t*), so we have
pa=max(0,z[t—t*]), where the slope Z estimates a new
and unknown parameter representing the rate at
which the bait loses its attractiveness with time. Note
that this model was chosen to be parsimonious and
appropriate in the example case used, but others could
be substituted (it is only necessary to specify py as a
function of time).

Estimations. We need to estimate 3 parameters: the
arrival rate prefactor p, (from which we can find 5»), the
departure rate pg, represented by z and the visible frac-
tion p.

The process requires a first ‘guess’ at a value of z
and p. For this, we choose p,, so that the total expected
number of observed fish matches the actual count.

a shorter time, since the departure rate
grows with time.

Fig. 8 shows the profile likelihood for
the prefactor in fish arrival rate. We see
that the maximum-likelihood estimate is
0.061 min_%, with a 95% confidence interval be-
tween 0.044 and 0.091. From this we can find the
number of fish having arrived in the bait region at
time t: N, = [10.061/tdt = 0.041¢t*2 (¢t in minutes).
Using the estimate p, this predicts that 0.013t%2 fish
will be visible to the camera (as long as they have not
begun leaving, i.e. for ¢t < t*). This is close to half the
prediction made by the regression method in the pre-
vious section (there, Model 2 gave 2JA = 0.284, so
0.02t*2 fish would be present), but that had assumed
the visible fraction p = 1.

Using the parameter estimates gives a model of pre-
dicted numbers of fish in the bait zone (m; + n,, the
output if which is shown in Fig. 9, together with the
observed number of fish. This result demonstrates the
potential for the camera to underestimate numbers, a
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Fig. 6. Regression models. Circles: observed data; dashed
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Model 3—all using transformed data. Note that Models 2
and 3 are indistinguishable at the scale plotted

phenomenon now empirically confirmed by Jamieson
et al. (2006) (though with a different lander to that used
in generating the test data). Some may be surprised at
the closeness with which the HMM model follows the
data. The explanation is that the HMM is not a simple
3-parameter model (as often encountered in basic sta-
tistics), but a Markov model, which at each time step
uses the whole time series along with the 3 parameters
in a constantly updating calculation of expected num-
bers in the next photoframe. The fact that it follows the
data consistently suggests that the parameter esti-
mates are good.
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DISCUSSION

Having examined 3 different methods for estimating
abundance from fish counts at a bait, we are in a posi-
tion to make recommendations for studies with cross-
current foraging fish in reasonably stable currents. The
first of these may be very surprising for biologists who
have relied on first arrival times for their estimates.
This measure was found to have a theoretically infinite
variance and, in practice, to make a very poor estima-
tor, as long as we can assume that fish do not socially
interact, or become distracted from the bait. This find-
ing is independent of the specific model of fish arrivals
used, as it is a consequence of assuming a random dis-
tribution of fish in the environment. The weakness of
first arrival time as a predictor had been obscured by
the use of deterministic models, which did not allow
uncertainty to be quantified. Despite several reports of
correlations between t; and independently measured
abundance (e.g. Sainte-Marie & Hargrave 1987), there
is no support from statistical theory for using first
arrival times.

Conversely, a regression on the rising phase of the
time series (the period until maximum numbers are
expected), assuming Poisson distribution of residuals
and a diffusive scaling of arrival rate, gave a precise
measure of abundance with the test data. This method
is theoretically sound and simple to use, so we recom-
mend it for circumstances where its assumptions are
found to hold. These assumptions are specifically that
fish behave independently, are distributed at random
in the environment, and that all fish arriving at the bait
are seen upon arrival. Further, that fish do not leave
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based on independent abundance estimates
(e.g. from trawls) would be necessary to esti-
mate D, following this interpretation.

The regression and, in our example (though
not necessarily or generally), the HMM
method assumed that departure rate from the
bait is zero until the maximum number of fish
is seen (t*). Strictly, this is not likely, partly
because of randomness in fish behaviour and
partly because the maximum should appear
when the departure rate exceeds the arrival
rate, which by definition is greater than zero.
The resulting bias underestimates abundance
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Fig. 9. Examplary data (counted individuals in each photo) with hidden
Markov model (HMM)-fitted estimates. HMM with full knowledge of ob-
); model based on parameter estimates with the mean of
); model of observed (visible) fish only, based on

servations (
observed count (

mean observed count (= =)

the bait until after maximum numbers are observed,
that the plume does not change greatly in direction
during the rising phase, and that the usual assump-
tions for regression hold.

The more flexible method of HMM is recommended
for its smaller set of assumptions, though it incurs a cost
in complexity and additional parameters to be esti-
mated. The assumptions of the HMM method are that
fish are distributed randomly in the environment, act
independently (including at the bait) and that the
plume does not change greatly in direction during the
time series (though the method could be adapted to
cope with violations of the latter 2 assumptions). We
wish to emphasise that it is very important to deter-
mine if the assumptions of any method are met prior to
use.

In our example, for models of both the regression
and HMM methods, we introduced a new parameter
D, defined as fish searching diffusivity. Estimates of D
should be sought if this simple and flexible model is to
be used. D has the form of swimming speed squared,
divided by the frequency of changing direction whilst
searching for plumes: D = w?/u. Search speeds (w) are
often known, but new effort is needed to estimate turn-
ing frequencies (1) from observations of fish behaviour.
Abundance estimates are sensitive to D, which is
much less than their sensitivity to swimming speed, so,
given a reasonable estimate of a fish's turning fre-
quency M, a working estimate of D is attainable. It is
possible to interpret D more broadly as an empirical
parameter that depends in part on non-linear exten-
sion of the plume, non-ideal swimming strategies of
the fish and other factors that ‘spoil’ the theoretical
ideals of the geometric model. However, a calibration

in the regression method. It is therefore very
important to ensure that this assumption is a
reasonable approximation (i.e. that the maxi-
mum occurs at a time after deployment that is
less than the expected staying time of a fish).
The HMM method is less affected by this bias
from the rising phase, because the iterative
fitting can compensate using the remainder
of the time series. If there is a long rising phase, we
recommend the HMM method with some simple
departure model designed to reflect the researchers’
beliefs about departures. In other words, the HMM
method should be customised to the particular case for
which it is to be used.

Practical application of the regression method is sim-
ple, using most statistical software packages. Time acts
as the independent variable in a univariate non-linear
regression for number of fish observed in each camera
exposure (as in the described Model 2). The intercept
should be set as zero (no fish at time zero), leaving the
slope to be estimated, giving A (as in Model 2), which
enables A to be found from the various velocity esti-
mates. We illustrated diagnostic plots to check that the
assumptions of this method support its use; we espe-
cially recommend residual and quantile plots for this.
Practical use of the HMM method requires some pro-
gramming, for example, in a statistical or mathematics
package—details are provided in the Appendix.

The problem caused by fish attracted to the appara-
tus, but not photographed on the bait (Collins et al.
1999) is well known and has been demonstrated by
Jamieson et al. (2006, admittedly using a design of
lander that is not usual for abundance estimation). The
HMM method estimates the size of the resulting bias
simultaneously while estimating arrival and departure
rates. In the example shown, the HMM method esti-
mated an arrival rate close to half that of the regression
method when using the same model of arrivals over
the same section of the time series. Independent mea-
sures of the 'hidden fraction’ of fish would be hard to
obtain, unless cameras were set to observe the lander
system.
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The HMM method requires a model of departures as
well as arrivals. Priede & Merrett (1998) fitted an em-
pirical curve to the estimated staying time (which de-
termines departure rate) using the time of maximum
number of fish (t*) minus the first arrival time (1), thus
assuming staying time to be constant. However, bait
depletion and scavenger competition mitigate against
this assumption, especially for long time series. In prin-
ciple, we could understand both effects in terms of opti-
mal foraging theory, as suggested by Priede & Merrett
(1998), who showed that staying time (as they defined
it) declined with fish abundance (independently deter-
mined with trawls). However, using the marginal value
theorem (Charnov 1976), suggested by this result, re-
quires a model for competition and satiation, leading to
considerable complications and introducing new para-
meters. For the present purpose, we suggest the parsi-
monious, single-parameter model in which the proba-
bility of departing in a small time interval increases at a
constant rate with elapsed time. The gradual increase
in departure probability that we hypothesise is most
likely related to bait depletion, which can be estimated
from the photographs. This could set limits (at least)
on the z parameter of py so even crude estimates of
bait depletion rate could be useful in using the HMM
model. Clearly, there are opportunities to improve on
this, but each development of sophistication needs to
be justified by quantity and quality of data available.

Broadening the discussion, our overall model of fish
behaviour can be extended in a number of ways to ad-
dress specific biological issues. For example, species
that show either gregarious or food-swarming behav-
iour could be represented by alternative statistical
models of dispersion (the Poisson model being a null-
hypothesis), and allowing for autocorrelation in the
time series in the regression technique could probably
accommodate most of these effects. Territoriality can be
taken into account by truncating the arrival rate after a
time representing territory size, and this approach can
also be used to allow for rival attractants (e.g. natural
food falls) in the environment. Changes in current
velocity over measurement time are often observed in
the deep sea and are almost inevitable (due to tides) in
shallower seas. The result is a more complicated plume
shape and perhaps changes in fish swimming veloci-
ties. To take account of this, our model could be treated
as a piecewise fit to the number of observed fish, using
different current parameters over different sections.
More sophisticated modelling of the plume will allow a
more precise description of how arrival rate depends on
abundance, but not necessarily more precise abun-
dance estimates, since additional parameters reduce
statistical power. As stated earlier, it is possible to
include plume spreading in the diffusivity parameter D
of fish searching behaviour.
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Appendix 1. Implementing the HMM technique

The hidden Markov model (HMM) method is imple-
mented through an HMM filter. In the following, we briefly
describe how this filter is constructed, so that those familiar
with modelling can replicate the technique. In-depth treat-
ments of the theory of HMMs are found in Cappé et al.
(2005). The filter first aims to estimate the total number of
fish, x; = n; + m,, in which x;is a stochastic variable that may
take integer values between 0 and a sufficiently large
bound K on the total number of fish at the bait.

The filter needs the transition probabilities of x;. Assume
that x;, = i and consider x;,,, where h is a fixed short time
interval. If a fish has arrived, then x;,, = 1 + 1; the probabil-
ity of this is gj;. 1)(f) = h X p4(t). If a fish has departed, then
Xyon = 1— 1; the probability of this is gj;_ 1)(t) = I X b X pg(f).
Alternatively, nothing has happened; the probability of this
is gii(t) = 1 = gji-1)(t) = Gii+ 1)(t). These are valid approxima-
tions when h is small compared to p,(f), p4(t) and the rate of
change of these functions. Typical camera sampling times of
30to 120 s (in our example it was h = 90 s) will give sufficient
resolution in most practical cases.

The predictive filter consists of ®(¢), a (row) vector, the ith
entry ®;(t) of which is the probability that x; = i, given all
observations strictly prior to t. Similarly, the row vector y(¢)
has entries y;(t) being the probability that x; = i, given all
observations no later than t. The 'data update’ transforms
d(t) to y(t) by taking the observation m; = m;into account:

@;(t)

vt = Tﬂp{mﬁmt | x, =1} (A1)

Here, I(t) = £,P{m; = m;x; = i} is a normalization ensuring
that Z,y;(t) = 1. These probabilities are computed using the
assumption that, conditional on x; = i, m; is binomially dis-
tributed with number parameter i and probability para-
meter p:

P{m,=m,Ix, =i} = (r:]tjpmt(l— p)y ™ (A2)

The time update projects y(t) forward in time to obtain a
prediction ®(t + h):
Jj+1
@(t+h) = Y, vit)gy(t) (A3)

i=j-1

The time update and the data update are iterated for-
wards in time; the initial condition is y,(0) = 1 and y;(0) = 0
for i # 0. At the end of the iteration, we evaluate the likeli-
hood function L(z,p) = [1,1(t). Recall that p, is estimated by a
moment method rather than with the likelihood method.
The likelihood function is optimized numerically. For esti-
mated parameters, we ‘smooth’ to obtain probability vectors
n(t), with mt;(¢) denoting the probability that x; = i, given all
observations. This smoothing is an iteration backwards in
time:

i« ;(t+h)
() = wy(t) Z gy(t) ,(t+h) (A4)

Jj=i-1

with terminal condition nt(T) = y(T).
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