INTRODUCTION

Deep-sea gorgonian corals of the family Isididae form an important component of the benthic macrofauna of the Tasmanian seamounts. The common name for this group, bamboo corals, derives from the bamboo-like alternation of calcite internodes and shorter organic nodes along skeletal axes (Fig. 1). Owing to lifespans of up to 400 yr (Thresher et al. 2004, Andrews et al. 2005, Sherwood & Edinger 2009), there has been growing interest in both the vulnerability of deep-sea corals to the impacts of bottom trawling (Koslow et al. 2001) and the potential to extract long-term climate records from their skeletons (Thresher et al. 2004, 2007, Roark et al. 2005).

The organic nodes of deep-sea isidid corals are derived from recently exported particulate organic material. Multi-century time-series of 15N and 14C in bamboo corals from deep Tasmanian seamounts: evidence for stable oceanographic conditions

Owen A. Sherwood1,5,*, Ronald E. Thresher2, Stewart J. Fallon3, Diana M. Davies4, Thomas W. Trull2,4

1Department of Earth Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1C 3X9, Canada
2CSIRO Marine and Atmospheric Research and Wealth from Oceans and Climate Adaptation Flagships, Castray Esplanade, Hobart, Tasmania 7000, Australia
3Research School of Earth Sciences, Australian National University, Bldg 61, Mills Road, Acton, Australian Capital Territory 2000, Australia
4Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC) and Institute of Antarctic and Southern Ocean Studies (IASOS), University of Tasmania, Private Bag 80, Hobart, Tasmania 7001, Australia

5Present address: 4 Hipditch Hill, St. John’s, Newfoundland A1A 1A5, Canada

ABSTRACT: Bamboo corals (Family Isididae) are an important component of seamount benthos south of Tasmania. Besides having lifespans of up to 400 yr, little is known about their basic ecology, nor how to decode potential climate signals encoded in their skeletons. We explored the stable nitrogen isotope and radiocarbon compositions of the skeletal organic fraction of the genera Isidella, Keratoisis and Lepidisis collected from 3 Tasmanian seamounts. Analyses were performed on tissues and organic node growth rings sampled at a temporal resolution of 1 to 4 yr. Radiocarbon chronologies exhibited nuclear bomb signals characteristic of surface waters and constrained radial growth rates to ~35 ± 10 µm yr$^{-1}$ for 3 specimens of the genus Lepidisis and 113 ± 17 µm yr$^{-1}$ for 1 specimen of Isidella. 15N values of the living tissue and underlying gorgonin were similar and averaged 9 to 12‰. Records of 15N from 8 different specimens showed subtle, quasi-decadal patterns over the last ~100 yr, although the amplitude of these features (~1‰) was similar to the average intra- and inter-colony reproducibility. These results demonstrate the utility of deep-sea corals to track seamount biogeochemical processes over long time scales, and suggest that the extent of nutrient depletion of surface waters and associated trophic dynamics have remained relatively constant in this region over centuries. This provides an important baseline for the evaluation of the impacts of anthropogenic climate change.

KEY WORDS: Tasmanian seamounts · Deep-sea corals · Stable isotopes · Radiocarbon · Biogeochemistry
ter (POM; Griffin & Druffel 1989, Roark et al. 2005). This suggests that geochemical analyses of the organic nodes could be used to track a variety of biogeochemical cycles in overlying surface waters, including primary productivity and trophic dynamics (Heikoop et al. 2002, Sherwood et al. 2005). Moreover, by linking these analyses with those from the calcitic internodes, which are derived from dissolved inorganic carbon (DIC) at depth, detailed records of both surface and deep-water processes could be generated from the same coral (Roark et al. 2005, Sherwood et al. 2008a).

The present study examines temporal patterns of bomb-14C and natural abundance stable nitrogen isotope compositions (δ15N) in the organic nodes of deep-sea isidids. Bomb-14C refers to the radiocarbon produced by atmospheric nuclear weapons testing in the late 1950s and early 1960s. Oceanic uptake of bomb-radiocarbon beginning in the late 1950s provides a dated marker which may be used to establish or validate skeletal chronology (Kalish 1993, Kerr et al. 2005, Sherwood & Edinger 2009). The combination of bomb-14C and δ15N data allows us to assess carbon and food sources to the skeletons, provides new constraints on deep-sea coral growth rates and makes it possible to evaluate the use of δ15N time series records from isidids for tracking marine biogeochemical processes on and around seamounts and other deep-sea environments over long (decade to century) time scales (Sherwood et al. 2005, Williams et al. 2006, 2007).

MATERIALS AND METHODS

Analyses were carried out on specimens of deep-water isidid corals of the genera *Isidella*, *Keratoisis* and *Lepidisis* (Family Isididae; see Table 1). Identification to species level was not possible. Specimens were collected by dredge from seamounts south and east of Tasmania, Australia (Fig. 2), from Cascade Plateau (approx. 44.0°S, 150.5°E), Dory Hill (44.33°S, 147.13°E) and an unnamed seamount from the southwestern zone (44.19°S, 146.20°E). Map drawn with ODV software (Schlitzer 2007). All of the specimens were live when collected and were stored in 70% ethanol, except for a large (4 cm diameter) stump of *Keratoisis* (specimen K1) which was probably recently dead when collected and was stored dry. Ethanol preservation of the live-collected specimens was unavoidable, as the specimens originally were preserved for taxonomic identification. While ethanol preservation may induce slight alteration in the isotopic composition of some organism tissues (Sweeting et al. 2004), the durable, cross-linked, fibrillar protein of isidid node material (Sherwood et al. 2006) is likely to resist such alterations.

Nitrogen isotope and radiocarbon analyses were done on the organic nodes sectioned from specimen bases in order to obtain the longest records possible. To test for intracolony reproducibility of isotopic re-

Fig. 1. (a) Piece of a live-collected isidid colony (*Isidella* sp.; I4) showing dark brown organic nodes and white calcite internodes which make up the skeletal axis. Tissue layer remains partially intact around the colony. Ruler is 15 cm long. (b) Section through a decalcified organic node, showing finely laminated, concentric growth rings in the midst of being individually separated.

Fig. 2. Coral collection locations (●), from east to west Cascade Plateau, Dory Hill and an unnamed seamount in the southwestern zone; seawater radiocarbon stations (x), taken from the literature. Also shown are the approximate positions of the subtropical and subantarctic fronts.
cords, 2 adjacent nodes from the base of specimen T.H17442 and 1 node from 43 cm higher up the same colony were analysed. To isolate samples, nodes were sectioned with a diamond saw to a thickness of approximately 4 mm and immersed in 4 % (v/v) HCl to dissolve the calcite fraction. After 4 d of dissolution, sections were transferred to a glass petri dish and immersed in deionised water. Sections were then peeled apart in concentric rings using scalpel and tweezers under a binocular microscope equipped with a digital camera (Fig. 1). Peels were delineated along growth zones, with each sample integrating 1 to 4 individual growth rings (the finest possible resolution using scalpel and tweezers). Specimen K1 was sampled at slightly lower resolution (approx. 5 growth rings per sample) because of its longer, 200 yr lifespan. Photographs were taken after removal of each sample in order to measure exact distances. Samples were transferred to 2 ml polyethylene vials, triple rinsed in deionised water and dried at 50°C over 48 h. Tissue samples were prepared in the same manner as organic fractions were taken after removal of each sample in order to measure exact distances. Samples were transferred to 2 ml polyethylene vials, triple rinsed in deionised water and dried at 50°C over 48 h. Tissue samples were prepared in the same manner as organic node samples.

For nitrogen isotope analysis, approximately 0.5 mg aliquots were weighed into 5 × 5 mm ultralight Sn cups. Analyses were carried out using a Fisons 1500 elemental analyser coupled via a Con-flow II interface to a Finnigan DeltaPlus isotope ratio mass spectrometer at CSIRO Marine and Atmospheric Research. Combustion CO₂ was removed from the carrier gas stream using a sodium hydroxide scrubber (self-indicating Ascarite 2, Thomas Scientific) during the 15N analyses to avoid the possibility of CO₂ from previous samples producing CO+ in the source and interfering at specific mass to charge ratios (m/z) 29 and 28 (Brooks et al. 2003). Standardization was by reference to the N₂ lab tank work standard. The reference materials were IAEA N1 (ammonium sulphate, RM8547, δ¹⁵N = +0.4‰ AIR), N3 (potassium nitrate, RMB549, δ¹⁵N = +4.7‰ AIR; Gonfaudantini et al. 1995) and casein (standard OAS, δ¹⁵N = +5.94‰ AIR; Organic Analytical Standard B2155, batch no. 114859, Elemental Microanalysis). Based on replicate runs of these standards, the estimated precisions were typically 0.1‰ (n = 20). Blank contributions were negligible and no correction was applied. Approximately 6% of the coral samples were analysed in duplicate. The difference between duplicates averaged 0.11‰ (n = 11).

For radiocarbon analysis, decalcified organic node samples were combusted in individual quartz tubes and reduced to graphite in the presence of iron catalyst. Measurements were performed on graphite targets at the Australian National University Single Stage Accelerator Mass Spectrometer facility. Results include a background and δ¹³C correction and are reported as Δ¹⁴C (±SD), corrected for decay between 1950 and the year of measurement according to Stuiver & Polach (1977). Additional correction for decay since the time of sample formation was not applied, because ages of individual samples were not known a priori. Precision of individual Δ¹⁴C measurements averaged 6‰ (1 SD).

RESULTS AND DISCUSSION

Bomb-¹⁴C chronologies

Four of the live-collected corals (Lepidisis: T.H17442, K1350 and L4; Isidella: I4) were analysed for Δ¹⁴C and one of these (T.H17442) was analysed in replicate (nodes 3 and 4). Plots of Δ¹⁴C versus sample distance from the margin of the growing edge of the coral all showed temporal patterns characteristic of oceanic uptake of bomb-¹⁴C (Fig. 3). Values of Δ¹⁴C averaged −66 ± 7‰ (n = 12) during the pre-bomb era, increased rapidly to a maximum of +60 to 90‰ and then decreased to +40 to 65‰.

The point of initial increase in bomb-¹⁴C records provides a dated marker because surface waters of the world oceans began taking up bomb-¹⁴C around 1957 (±3 yr) (Kalish 1993, Grottoli & Eakin 2007, Campana et al. 2008). The timing of the peak in bomb-¹⁴C varies with local oceanographic conditions, and is therefore less useful as a dated marker if the timing is not known a priori. Assuming that recently fixed and exported POM is consumed by the corals with no appreciable time lag (see below), the midpoint between the first datum to exceed the +2 SD level (−53‰) associated with the average pre-bomb Δ¹⁴C (−66 ± 7‰) and the next oldest datum was assigned to the year 1957. The point of initial increase and the year of collection thus provided 2 tie-in points from which growth rates (Table 1) and skeletal chronology were defined. The coral records in Fig. 3 were scaled to a common time axis on the basis of these calculations. While we assumed a constant radial growth rate for the purposes of sclerochronology, radial growth rates probably vary by up to 20%, based on observations of axial asymmetry. This, along with errors in the bomb-¹⁴C derived growth rate itself, should be taken into consideration when comparing geochemical records and growth rates among different colonies.

Coral-based bomb-¹⁴C records were compared with 2 other records from the Southern Ocean derived from dated otoliths of fish (Fig. 4). The longest of the otolith...
records was derived from a collection of snapper *Pagrus auratus* from coastal waters of the North Island of New Zealand (39°S, 179°E; Kalish 1993). The closest record to ours in terms of geographic distance was derived from blue grenadier *Macruronus novaezelandiae* from the west coast of Tasmania (Kalish et al. 1997). Based on the assumption that the growth zones in the otoliths of both species form annually, Δ¹⁴C data were reported with an age correction for the time since formation (Kalish 1993, Kalish et al. 1997). Our data were not age-corrected because we could not assume an independent chronology *a priori*. The difference between Δ¹⁴C and age-corrected Δ¹⁴C values was 0‰ in the year 1950, and <5‰ towards the earlier and later ends of the records, which is negligible over the time period of interest. All of the records exhibited similar pre-bomb levels of Δ¹⁴C and patterns of increase, but with important differences in the timing and amplitude of the bomb peak. The otolith records peaked between 1970 (Tasmanian grenadier) and 1980 (New Zealand snapper) with values of approximately +100‰. The coral records peaked somewhat later, in the 1980s, with values of +60 to 90‰, suggesting that the bomb signal in the corals could

Table 1. Summary of collection details, growth rates and bulk δ¹⁵N of isidid corals in the present study. nd: no data

<table>
<thead>
<tr>
<th>Coral ID</th>
<th>Genus</th>
<th>Region</th>
<th>Latitude (°S)</th>
<th>Longitude (°E)</th>
<th>Depth (m)</th>
<th>Year of collection</th>
<th>Node</th>
<th>Distance from base of colony (cm)</th>
<th>Radial growth rate (µm yr⁻¹)</th>
<th>Bulk δ¹⁵N (‰) mean ± SD (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.H17442</td>
<td>Lepidisis</td>
<td>Cascade Plateau</td>
<td>44.0</td>
<td>150.5</td>
<td>1000</td>
<td>1990</td>
<td>3</td>
<td>8.5</td>
<td>35 ± 13ᵇ</td>
<td>12.08 ± 0.33 (18)</td>
</tr>
<tr>
<td>T.H17437</td>
<td>Lepidisis</td>
<td>Cascade Plateau</td>
<td>44.0</td>
<td>150.5</td>
<td>1250</td>
<td>1990</td>
<td>2</td>
<td>nd</td>
<td>33ᵃ</td>
<td>11.23 ± 0.21 (10)</td>
</tr>
<tr>
<td>T.H17441</td>
<td>Keratoisis</td>
<td>Cascade Plateau</td>
<td>44.0</td>
<td>150.5</td>
<td>925</td>
<td>1990</td>
<td>2</td>
<td>nd</td>
<td>−100⁰</td>
<td>9.49 ± 0.41 (13)</td>
</tr>
<tr>
<td>K1*</td>
<td>Keratoisis</td>
<td>Cascade Plateau</td>
<td>44.0</td>
<td>150.5</td>
<td>−1000</td>
<td>1990</td>
<td>2</td>
<td>nd</td>
<td>−100⁰</td>
<td>9.45 ± 0.40 (39)</td>
</tr>
<tr>
<td>I1</td>
<td>Isidella</td>
<td>Dory Hill</td>
<td>44.33</td>
<td>147.13</td>
<td>1150</td>
<td>2007</td>
<td>3</td>
<td>9</td>
<td>113ᵇ</td>
<td>11.05 ± 0.47 (20)</td>
</tr>
<tr>
<td>K1350</td>
<td>Lepidisis</td>
<td>Dory Hill</td>
<td>44.33</td>
<td>147.13</td>
<td>1366</td>
<td>1997</td>
<td>1</td>
<td>6</td>
<td>31 ± 17ᵇ</td>
<td>11.64 ± 0.25 (20)</td>
</tr>
<tr>
<td>L4</td>
<td>Lepidisis</td>
<td>SW zone</td>
<td>44.19</td>
<td>146.20</td>
<td>1140</td>
<td>2007</td>
<td>4</td>
<td>4.5</td>
<td>37 ± 17ᵇ</td>
<td>11.82 ± 0.28 (16)</td>
</tr>
</tbody>
</table>

*ᵃProbably dead when collected;ᵇBomb-¹⁴C derived growth rate (present study);ᶜAssumed growth rate, based on average of Nodes 3 and 4 from the same coral;ᵈAssumed growth rate, based on average of all bomb-¹⁴C dated *Lepidisis* colonies (present study);ᵉAssumed growth rate, based on data in Thresher et al. (2007);ᶠAssumed growth rate, based on that for colony I4.
be somewhat lagged and attenuated relative to surface waters. These differences, however, may in part reflect local variability in surface water bomb-14C contents, given that the corals had very similar Δ14C values to seawater DIC samples collected along meridional transects adjacent to Tasmania, which suggests no attenuation (Fig. 4). One of these transects, from 1990, was located along 152°E, just to the east of the Cascade Plateau (Lassey et al. 1990). The other transect, from 1993, was located at approximately 146°E south of Tasmania (data from GLODAP, Key et al. 2004). Over the latitudinal range of 42 to 46°S, seawater Δ14C values for the upper 100 m averaged +71 ± 21‰ (n = 11), overlapping with the coral data for the same time period from 1990 to 1993. In contrast, waters from 800 to 1200 m depth had pre-bomb levels of Δ14C (−83 ± 61‰, n = 7). These results reiterate that the skeletal organic fractions of deep-sea octocorals are derived not from DIC at depth, but rather from recently fixed and exported particles (Griffin & Druffel 1989, Roark et al. 2005, Sherwood & Edinger 2009), and validate our assumptions for assigning the point of initial increase to the year 1957.

If the corals feed on a degraded fraction of POM, as suggested by δ15N results (see below), the point of initial increase could have occurred later than 1957, leading to an underestimation of growth rates. Similarity of the reconstructed bomb-14C records with surface water DIC (Fig. 4) argues against significant delay in the timing of initial increase of skeletal bomb-14C. Moreover, sinking particles in the Tasman Sea and elsewhere sink to 1000 m water depth within weeks of leaving the euphotic zone (Trull et al. 2001, and references therein).

Growth rate variability

Isidid growth rates appear to vary widely among different genera, even among those inhabiting the same depth on the same seamount. At radial growth rates of ～30 µm yr⁻¹, Lepidisis colonies grew about 3 times slower than colonies of Keratoisis and Isidella (～110 µm yr⁻¹; Table 1). For comparison, bomb-14C-dated colonies of Keratoisis ornata collected off Newfoundland grew at 50 to 75 µm yr⁻¹ (Sherwood & Edinger 2009), while samples of Keratoisis and Isidella from California and the Gulf of Alaska were shown to grow at 55 to 160 µm yr⁻¹ (Roark et al. 2005, Andrews et al. 2005). A 210Pb-dated colony of Lepidisis collected off New Zealand grew at 180 µm yr⁻¹ (Tracey et al. 2007). While it is not clear why growth rates should differ so widely among isidid genera living in the same habitat, resource partitioning in order to reduce competition offers a possible explanation. For example, based on stable carbon and nitrogen isotope analysis, different species of deep-sea gorgonians of Newfoundland and Labrador occupy distinct trophic niches with food sources ranging from freshly exported phytodetritus to more degraded and resuspended materials (Sherwood et al. 2008b). Differences in quality and quantity of foods could thus account for growth rate variability. Intergeneric differences in δ15N, however, point to Keratoisis as having a different trophic niche compared to Isidella and Lepidisis.

Organic node δ15N

The overall distribution of organic node δ15N values for the Cascade Plateau was bimodal, with Lepidisis spp. (T.H17442, T.H17437) averaging 11.98 ± 0.53‰ (n = 55) and Keratoisis sp. (T.H14771, K1) averaging 9.46 ± 0.40‰ (n = 52) (Table 1). For the unnamed seamount samples from the southwestern zone, δ15N of Isidella (I4) and Lepidisis (L4) averaged 11.72 ± 0.27‰ (n = 20). For Dory Hill, δ15N of Lepidisis (K1350) and Isidella sp. (I1) averaged 11.43 ± 0.54‰ (n = 49). Thus differences in bulk δ15N were distributed among species, with Keratoisis spp. having distinctly lower δ15N, and not among seamounts. Analysis of a living tissue sample from K1350 yielded a δ15N value of 11.5‰, indistinguishable from that of the bulk skeleton and indicating no isotopic fractionation between tissue and skeleton, as previously noted in other gorgonians (Heikoop et al. 2002, Sherwood et al. 2005).
The δ^{15}N of deep sinking POM in the subtropical zone south of Tasmania averages 2 to 3‰ (Lourey et al. 2003; Fig. 5). If the corals were feeding directly on these food sources, they would be expected to have a δ^{15}N of 5 to 6‰, based on an approximate 3‰ trophic level enrichment (Minagawa & Wada 1984, Wada et al. 1987). The observed higher coral δ^{15}N values (9 to 12‰) could occur in several ways. (1) The corals could be feeding on sinking POM, but with larger trophic level enrichment than expected. This appears unlikely, because nitrogen is recycled more efficiently in deep-sea ecosystems, and thus trophic fractionation would be expected to be less, not greater, than the canonical 3‰ (e.g. Iken et al. 2001). (2) Food sources could be derived from north of the subtropical front, located between ~40 to 45°S, where δ^{15}N of POM appears to be higher because of more complete nitrate utilization (Altabet & Francois 1994, DiFiore et al. 2006; Fig. 5), although the oligotrophic conditions of those waters argues against them as a dominant source of food. (3) A significant proportion of the corals’ diet could come from degraded POM fractions, as observed for Keratoisis ornata living near the Grand Banks of Newfoundland in the northwest Atlantic (Sherwood et al. 2008b). The δ^{15}N of suspended POM increases significantly (on the order of 3 to 5‰) with depth through the mesopelagic zone (Saino & Hattori 1987, Altabet 1988) as the particles are degraded by microbial activity (Macko & Estep 1984), and this is reflected in animals which feed on these fractions (Mintenbeck et al. 2007). (4) The corals may feed on zooplankton, as observed in deep-sea gorgonians of Antarctica (Orejas et al. 2003).

This would introduce 1 or 2 additional trophic steps, with a corresponding 3 to 6‰ increase in δ^{15}N. We consider feeding on degraded POM and/or zooplankton to be the most likely explanation for the high δ^{15}N in the present study. Additional data, particularly from lipid and fatty acid analyses (e.g. Kiriakoulakis et al. 2004, Hamoutene et al. 2008), would help to verify this hypothesis.

δ^{15}N time series

Because the skeletal organics of deep-sea isidids are derived ultimately from recently exported particles, transmitted to the corals via one or more trophic intermediaries, time series records of δ^{15}N from this fraction have the potential to record a variety of biogeochemical processes in overlying surface waters (Sherwood et al. 2005, Williams et al. 2006, 2007). In order to evaluate the potential usefulness of this proxy, we examined both intra- and intercolony reproducibility of δ^{15}N records.

To examine intracolony reproducibility, 3 nodes were isolated from Lepidisis specimen T.H17442 from the Cascade Plateau. Nodes 3, 4 and 23 were sectioned 8.5, 13 and 56 cm, respectively, from the base of the colony. Using bomb-14C derived growth rates (Table 1), nodes 3 and 4 showed reasonable similarity in δ^{15}N with a broad peak centered around the year 1960 and a trough centered on 1920 (Fig. 6a). The maximum offset between contemporaneous values (around year 1950) was 1.2‰, which far exceeded the analytical reproducibility (0.1‰). It remains unclear what proportion of this offset can be attributed to improper alignment of the chronologies (owing to error and non-linearity of radial growth rates) versus real differences in δ^{15}N among contemporaneous samples. Sampling at higher resolution may introduce additional variability. For node 23, we assumed a growth rate of 32 µm yr−1 based on the average growth rates for nodes 3 and 4. The δ^{15}N record for node 23 was 0.5 to 1‰ depleted relative to the records for nodes 3 and 4. Again, it is unclear what proportion of this offset may be attributed to chronological error. Ongoing investigations of skeletal growth banding coupled with bomb-14C and 210Pb dating may help to improve dating precision.

To examine intercolony reproducibility, 2 additional colonies from the Cascade Plateau were analysed (Fig. 6a). For Lepidisis specimen T.H17437, we
assumed a radial growth rate of 33 μm yr⁻¹, based on the average for other Lepidisis colonies dated by bomb-¹⁴C. The δ¹⁵N record from T.H17437 appeared similar to that of T.H17442-node 23, but was ~0.4‰ depleted. Specimen T.H17441 represented a different genus, Keratoisis, and we assumed a growth rate of ~100 μm yr⁻¹ based on previous work (Thresher et al. 2007). While δ¹⁵N values were lower in T.H17441 (~9.5‰), the δ¹⁵N record followed a similar pattern of decreasing δ¹⁵N to that of T.H17442-node 23 and T.H17437.

Intercolony reproducibility was also examined for corals from 2 other seamounts. Specimens I4 (Isidella) and L4 (Lepidisis) were collected from an unnamed seamount in the southwestern zone off Tasmania. The δ¹⁵N record for I4 exhibited 4 quasi-decadal peaks between 1950 and 2007 (Fig. 6b). The record for L4 did not exhibit the same peaks, but was broadly similar in terms of the mean and amplitude of δ¹⁵N. Colonies K1350 and I1 were collected from the Dory Hill seamount. Colony K1350 exhibited a broad peak in δ¹⁵N centered around 1950, with values dropping by 1‰ thereafter (Fig. 6c). This trend was continued with the record for specimen I1, although there was little temporal overlap between the 2 records.

The δ¹⁵N records from all colonies were compared with additional data for an approximately 200 yr old stump of Keratoisis from Cascade Plateau (specimen K1; Fig. 7). Data from recent specimens of Isidella and Lepidisis showed broad similarity in terms of mean values and trends. Values for Keratoisis averaged about 2‰ lower and indicated no trend over the past ~250 yr. Subtle, quasi-decadal features were evident in the records; however, the amplitude of these features within individual records (0.5 to 1.5‰) was of the same magnitude as the apparent intra- and intercolony variations. The causes of the quasi-decadal features remain unclear. One hypothesis is that latitudinal movements of the subtropical convergence zone associated with quasi-decadal climate variability (Thresher 2002, Ridgway 2007) alternately brings oligotrophic subtropical waters (higher in δ¹⁵N of NO₃) and nitrate-rich subantarctic waters (lower in δ¹⁵N of NO₃; DiFiore et al. 2006) into the study area. The δ¹⁵N signature is then incorporated into export production and reflected in the corals.

The range in δ¹⁵N values in the corals can be combined with observed latitudinal gradients in δ¹⁵N of NO₃ to estimate possible movement of the boundary between oligotrophic subtropical and nutrient-rich subantarctic waters. Using gradients observed near 43 to 45°S south of Tasmania (DiFiore et al. 2006) suggests frontal movements of less than 1° of latitude. Alternatively, the minimal changes in the coral δ¹⁵N can be translated into possible changes in the oligotrophic state of overlying surface waters; correlations between δ¹⁵N and [NO₃] (Lourey et al. 2003, DiFiore et
al. 2006) suggest changes of no more than about 10% in surface water [NO₃], and thus considerable constancy in environmental conditions over the past century. This includes constancy in the trophic relations that connect the surface water nitrate supply to the organic food on which the corals feed at depth. These observations provide an important baseline against which future climate change in the region can be evaluated. This is particularly important in light of models of anthropogenic CO₂ driven ocean warming that suggest this region will experience greater warming than elsewhere (Lyne et al. 2005), and observations in surface waters further north along the eastern coast of Tasmania that suggest a recent increase in the southward delivery of warm, salty Eastern Australian Current waters (Ridgway 2007, Hill et al. 2008).

Finally, the long-term stability of the organic δ¹⁵N signal in K1 (Fig. 7) contrasts with substantial changes in its skeletal calcite (internodal) composition over the same period (Thresher et al. 2004). This difference is consistent with a surface-derived dietary source for the organic node material, as compared with effects of ambient environmental conditions, at ca. 1000 m depth, on skeletal composition.

CONCLUSIONS

Uptake of bomb-¹⁴C in deep-sea isidids sampled from the Tasmanian seamounts at 900 to 1400 m water depth indicates that the seamount ecosystems may be tightly coupled with surface productivity. While bomb-¹⁴C levels in isidids originate from recently fixed and exported particles, δ¹⁵N data suggest this material is transmitted to the corals via one or more trophic intermediaries in the form of microbially degraded POM and/or zooplankton. Quasi-decadal features in the coral δ¹⁵N time series suggest the possible influence of decadal regional climate variability on seamount biogeochemistry, although improved sclerochronological precision is required to fully decode these signals. The limited overall range of δ¹⁵N variations indicates constancy of oceanographic conditions and ecosystem trophic dynamics over the past century, which provides a baseline for the evaluation of future impacts. The high precision with which the δ¹⁵N timeseries were obtained (~0.1‰ analytical uncertainty) and the interspecimen reproducibility (better than 1‰) in comparison to expected trophic effects (~3‰ per level), potential subtropical/subantarctic frontal movements (several ‰) and changes in the extent of nutrient depletion (also several ‰) make it clear that δ¹⁵N in deep-sea corals offers the capacity to provide sensitive records of oceanographic change.

Acknowledgements. We thank A. Williams, K. Gowlett-Holmes and G. Walker-Smith for the coral samples, and P. Alderslade for taxonomic assistance. O.A.S. was supported by an Endeavour Research Fellowship, R.E.T. by the CSIRO Wealth from Oceans and Climate Adaptation Flagships and T.W.T. and D.M.D. by the Australian Commonwealth Cooperative Research Centres Program. Sample collection was supported by CSIRO, the Australian Fisheries Research and Development Corporation and the Australian Department of Environment and Heritage. This is a contribution from the CSIRO Wealth from Oceans and Climate Adaptation Flagships.

LITERATURE CITED

- Campana SE, Casselman JM, Jones CM (2008) Bomb radiocarbon chronologies in the Arctic, with implications for the age validation of lake trout (Salvelinus namaycush) and other Arctic species. Can J Fish Aquat Sci 65:733–743

in the subantarctic and polar frontal zones of the Southern Ocean, south of Australia. J Geophys Res 106: 31489–31509

Submitted: February 27, 2009, Accepted: May 27, 2009

Proofs received from author(s): September 23, 2009