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INTRODUCTION

The April 2010 explosion and sinking of the Deep-
water Horizon (DWH) drilling platform off the coast
of Louisiana (USA) in the Mississippi Canyon Block
252 (MC252) released about 5 million barrels of
‘sweet’ Louisiana crude oil into surrounding waters
as it flowed unabated for 87 d (Crone & Tolstoy 2010).
It has been recognized as the largest marine oil spill
in US history, equivalent to 20 times the areal cover-
age of the ‘Exxon Valdez’ disaster (Turner et al.
2014a). Prevailing meteorological conditions led to
the subsequent oiling of many coastal wetlands rang-

ing from Louisiana to the Florida Panhandle in the
northern Gulf of Mexico (GoM), with a total of
1773 km of affected shoreline (Michel et al. 2013).

The oil released during this event was a complex
mixture containing tens of thousands of different
chemical constituents, ranging from lightweight aro-
matic chemicals that volatilize and degrade quickly,
to larger carbon chains that are resilient to weather-
ing. As oil was distributed into inshore coastal areas,
numerous processes (including photooxidation, eva -
po ration, emulsification, microbial activity, dissolution,
and adsorption to sediment particles) led to a much
different chemical mixture than that found closer to
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Cyprinodon variegatus) to determine whether behavioral avoidance occurs at a range of concen-
trations (0, 10, 20, and 40 ml oil l−1 of sediment) and weathering (fresh or weathered oil) scenarios.
All 3 species avoided medium (35, 18, 10% of trial time, respectively) and high concentrations of
fresh oil (30, 20, and 15%, respectively), while time spent over contaminated sediments at low
concentrations of fresh oil was higher (30, 40, and 40%, respectively). Weathered crude elicited no
significant avoidance behavior, with fish occupying between 40 and 60% of the trial period over
these sediments, regardless of concentration. This research highlights the heretofore unrecog-
nized role of behavior in fish resilience, as well as the need for future studies to incorporate eco-
logically relevant weathering rates. Such results are critical to the successful management of
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the offshore source (Mendelssohn et al. 2012). In gen-
eral, oil reaching inshore areas was heavily weath-
ered, and this altered crude was less toxic with fewer
water-soluble compounds (Reddy et al. 2012).

The various habitats (marshes, mangroves, sandy
beaches, and seagrass beds) in the affected area pro-
vide a variety of important ecosystem services, in -
cluding buffering coastlines from high-energy storm
events, improving water quality and clarity, and pro-
viding food and refuge for many commercially and
recreationally important organisms (Baltz et al. 1993,
Peterson & Turner 1994, Rozas et al. 2013). Spartina
alterniflora in salt marshes is the most abundant
emergent plant species in coastal Louisi ana, despite
areal coverage decreasing from historical levels due
to a variety of proposed factors, including subsidence,
canalization, eutrophication, shunting of sediment
supply, urbanization, and environmental toxins such
as oil (Silliman et al. 2012). Salt marshes were the
most frequently oiled habitat (45%) during the DWH
spill, and remedial activities occurred on <9% of the
affected area (Michel et al. 2013). The resilience of
these habitats is critical to the persistence of resident
fishes that inhabit these marshes, as well as the en-
ergy that is diverted to pelagic food webs (Peterson &
Turner 1994, McCann et al. in press). The vulnerabil-
ity of estuarine ecosystems and their fauna to oil re-
leased from DWH has been illustrated by numerous
studies (e.g. Silliman et al. 2012, Fodrie et al. 2014,
Rozas et al. 2014, Pezeshki & Delaune2015).

While the full scope of the ecological impacts of oil
in estuaries is yet to be determined, a number of stud-
ies have documented the impact to the fishes that re-
side in these areas. Field studies have documented
the effects of DWH oil on resident fishes throughout
the northern GoM (Fodrie & Heck 2011), including in
Louisiana (Able et al. 2015), Mississippi (Schaefer et
al. 2016), and Alabama (Moody et al. 2013). Results of
these studies have overwhelmingly identified few
drastic population or community changes (Fodrie et
al. 2014), and even some in creases in catch-per-unit-
effort post spill (Fodrie & Heck 2011, Schaefer et al.
2016). Notably, very few negative impacts have been
documented for resident fauna, with the exception of
a short-term decline in goby biomass/density that re-
bounded after 1 yr in coastal Alabama (Moody et al.
2013). These results mirror those of previous oil spills
in the GoM, with constant or increasing densities and
no change in community structure after oiling by
smaller spills in Texas (Rozas et al. 2000) and
Barataria Bay, Louisi ana (Roth & Baltz 2009).

Despite this consistent lack of effects in the field, a
number of laboratory experiments have documented

the negative effects of oil on fishes (Fodrie et al. 2014),
with deleterious impacts ranging from geno mic (Gar-
cia et al. 2012, Whitehead et al. 2012, Du bansky et al.
2013) to morphological alterations (de Soysa et al.
2012, Incardona et al. 2013). A substantial focus of
previous studies has been the effects of oiling on early
developmental stages of fish, as they are more sensi-
tive than adults. The greater sensitivity of larval fishes
is related to their size and lack of development (result-
ing in thin membranes and poorly de veloped systems
for detoxification) and their pelagic lifestyle, which in-
creases the risk of oil ex posure. However, oil can still
have considerable negative effects on adult organ-
isms, with documented examples of reduced foraging
efficiency (Gregg et al. 1997), impaired swimming be-
havior (Clair eaux et al. 2004), and other potential in-
direct effects such as shifts in diet (Brzorad & Burger
1994) and  delayed effects, such as the collapse of the
Pacific herring population 4 yr after the Exxon Valdez
oil spill (Thorne & Thomas 2008).

The dichotomy in results to date, with consistent
negative effects at the individual level that fail to
translate to population and community levels (Fodrie
et al. 2014), could be explained by a number of po ten -
tial mechanisms. For example, weathered oil reaching
estuaries was often patchily distributed (Michel et al.
2013) and may have been below toxic levels. There-
fore, fishes may have been able to survive and con-
tinue to reproduce despite experiencing some sub-
lethal effects. For those organisms that did succumb to
oil toxicity, many marine fishes have strong compen-
satory responses, especially short-lived fishes with
high reproductive capabilities, such that affected ar-
eas may quickly be colonized by recruits from nearby,
unaffected areas (Myers et al. 1999).

To date, one undocumented aspect that may lend
resiliencytoestuarinefishes isbehaviorandthecapac-
ity of fishes to detect and avoid oil. Here, the results of a
series of experiments designed to test whether 3 com-
mon inhabitants of inshore GoM ecosystems demon-
strate oil avoidance behavior are presented. Specifi-
cally, laboratory choice experiments were used to
test: (1) whether species-specific patterns in behavior
exist, and (2) avoidance patterns for unoiled versus a
range of fresh and weathered oil concentrations.

MATERIALS AND METHODS

Study organisms

Gulf killifish Fundulus grandis, sheepshead min-
now Cyprinodon variegatus, and sailfin molly Poe-
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cilia latipinna were selected for inclusion in this
study due to their abundance and widespread distri-
bution in coastal salt marshes, seagrass beds, man-
groves, and unvegetated shallow habitats through-
out the GoM. Able et al. (2015) reported F. grandis to
be the most abundant catch collected in minnow
traps following the DWH oil spill, with highest abun-
dances in marsh creeks, while C. variegatus and P.
latipinna were among the 5 most abundant marsh
fishes, especially in marsh ponds (>65% of the catch)
and depressions (>37%). In addition, F. grandis is
commonly used as a sentinel species and a frequent
model organism in toxicology studies, along with C.
variegatus (Able et al. 2015, Fodrie et al. 2014, Das-
gupta et al. 2016, Raimondo et al. 2016). All organ-
isms used in this study were adults collected from
unoiled marshes near Louisiana Universities Marine
Consortium (LUMCON) and consistent in size (total
lengths: F. grandis 64−102 mm; C. variegatus 41−
60 mm; P. latipinna 42−62 mm). All fishes were
released back into the wild after the study.

Experimental setup

Oil used in the experiments was BP Surrogate Oil,
obtained from the Marlin Platform near the site of the
DWH drilling platform. This oil has almost identical
toxicity/chemistry as that of the crude oil released
during the DWH spill (Martin et al. 2015). Prior to
experiments, oil was weathered by aerating it in a
volumetric flask in a fume hood to 40% by weight, a
weathering representative of much of the oil that
came ashore (E. Overton pers. comm.). Sediment col-
lected from unoiled areas near Lake Pontchartrain,
Louisiana, was used and, when applicable, mixed
homogenously with oil, placed on 1 randomized side
of a 38 l tank containing an airstone, and filled with
10 psu water mixed using Instant Ocean™ salt and
dechlorinated tap water.

Tanks were randomly assigned oil concentrations
(low, medium, or high) and weathering (unweath-
ered or 40% weathered) such that each fish species
had a choice between no oil and each unique con-
centration and condition of oil (no oil vs. unweath-
ered low oil, no oil vs. unweathered medium oil, no
oil vs. unweathered high oil, no oil vs. weathered low
oil, no oil vs. weathered medium oil, no oil vs. weath-
ered high oil). The concentrations of oil used in the
experiment were: 0, 10, 20, and 40 ml oil l−1 of sedi-
ment for the no oil and the low, medium, and high oil
treatments, respectively. These concentrations span
the range of oiling found in field studies (Turner et al.

2014a,b) and were used in previous experimental as -
sess ments (Horel et al. 2012, Martin et al. 2015). All
treatments were replicated (n = 10), and no individ-
ual was used more than once in trials. A randomized
sample of sediment was taken from each unique
treatment level and analyzed for alkane and aro-
matic oil concentrations to verify treatments follow-
ing methods described by Turner et al. (2014a,b).

During trials, 1 fish was released into the tank and
allowed to acclimate for a period of 5 min. Its move-
ments between the 2 ‘habitats’ (no oil vs. respective
treatments) were then recorded using a GoPro digital
camera (1040HD) for a period of 10 min. These ex -
peri mental periods are similar to those used in other
studies of fish behavior (Gerlach et al. 2007, Paris et
al. 2013, Martin 2017). The time spent on each side of
the tank was documented and compared among
treatments. A series of trials with no oil on either side
were also conducted and indicated no preference for
a particular side of the tank; these data were not
included in further analyses.

Statistical analyses

A general linear model was created, using time
spent in the side of the tank containing oil as a
response variable and oil concentration (low, medi -
um, high), weathering (unweathered, weathered),
and species (F. grandis, C. variegatus, or P. latipinna)
as factors. When significant differences were de -
tected, a Tukey’s post hoc test was performed. Com-
parisons of habitat preference were made by assum-
ing a 1:1 occupancy in each habitat and testing
whether the time spent on each side of the tank var-
ied significantly using a paired t-test (Peterson &
Renaud 1989, Martin & Valentine 2011). Prior to all
analyses, normality and homogeneity of variance
were tested and transformations were made, if nec-
essary. Nonparametric alternatives were used if
transformations failed to meet assumptions of the
tests. Results were considered significant at p < 0.05,
and highly significant at p < 0.01.

RESULTS

Sediment alkane (Fig. A1 in the Appendix) and
aromatic (Fig. A2) concentrations confirmed the
presence of various oil compounds across treatments.
Specifically, fresh oil contained total alkane concen-
trations of 25 510, 4236, 3292, and 0.856 µg g−1 for
high, medium, low, and no oil, respectively, while
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weathered oil contained 5349, 3659, 2730, and
0.735 µg g−1, respectively. Likewise, total aromatic
concentrations varied across treatments with fresh oil
containing more (high: 1561, medium: 596, low: 274,
no oil: 0.014 µg g−1) than weathered oil (high: 468,
medium: 238, low: 185, no oil: 0.357 µg g−1).

Response of fishes to the presence of oil was consis-
tent among the 3 species tested here (Fig. 1; F2,162 =
0.60, p = 0.549). However, avoidance behavior was
significantly different among the different concentra-
tions of oil (F2,162 = 3.97, p = 0.021), with medium and
high concentrations usually eliciting a stronger
response than low concentrations (Fig. 1). Oil weath-
ering also had a highly significant effect (F1,162 =
46.37, p < 0.001) on avoidance, with greater response
to fresh oil than weathered oil. No interactive effects
were detected (species × oil concentration F4,162 =
0.66, p = 0.169; species × oil weathering F2,162 = 2.19,
p = 0.115; oil concentration × oil weathering F2,162 =
2.05, p = 0.133; species × oil concentration × oil
weathering F4,162 = 0.56, p = 0.695).

Individual comparisons between time spent in oil or
no oil for each choice test highlighted important dif-
ferences in fish behavior. For example, weathered
crude had no effect on the habitat occupancy patterns
for any of the 3 fish species, with the proportion of

time in oil ranging from 0.4 to 0.6
(Table 1, Figs. 2−4). In contrast, higher
concentrations of fresh oil elicited a
very strong avoidance response from
all fishes tested (p < 0.001; Table 1,
Figs. 2− 4). Fun dulus grandis, Poecilia
latipinna, and Cyprinodon variegatus
all spent small amounts of time (about
30, 20, and 15%, respectively) over
sediments with high concentrations of
fresh oil. Medium concentrations of
fresh oil also elicited a highly signifi-
cant, very strong response (p < 0.001)
from P. latipinna (Table 1, Fig. 3) and
C. variegatus (Table 1, Fig. 4) (~18 and
10% of the trial duration, respectively)
and a significant re sponse (p < 0.05)
from F. grandis (Table 1, Fig. 2) (~35%
of the trial duration). The response of
fishes to low concentrations of fresh oil
were variable, however. F. grandis dis-
played significant avoidance (Table 1,
Fig. 2), spending around 30% of the
trial in the side of the tank containing
sediment with a low concentration of
fresh oil, while C. variegatus averaged
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Comparison                                              t                    p

Fundulus grandis
No oil vs low oil                                  −2.479            0.035
No oil vs weathered low oil                 0.456            0.659
No oil vs medium oil                          −2.622            0.028
No oil vs weathered medium oil       −0.821            0.433
No oil vs high oil                                −5.279            0.001
No oil vs weathered high oil               0.541            0.601

Poecilia latipinna
No oil vs low oil                                  −0.904            0.390
No oil vs weathered low oil                 0.0163          0.747
No oil vs medium oil                          −8.152            0.001
No oil vs weathered medium oil       −0.462            0.655
No oil vs high oil                                  2.784            0.002
No oil vs weathered high oil               0.817            0.435

Cyprinodon variegatus
No oil vs low oil                                  −1.836            0.100
No oil vs weathered low oil                 1.259            0.240
No oil vs medium oil                            2.963            0.001
No oil vs weathered medium oil       −0.768            0.462
No oil vs high oil                                −8.001            0.001
No oil vs weathered high oil               0.907            0.388

Table 1. Paired t-test statistics for each species and compari-
son. Low, medium, and high oil concentrations were 10, 20, 

and 40 ml oil l−1 of sediment, respectively
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Fig. 1. Comparison of time spent in the side of the tank containing oil among
fish species and oil concentrations and degree of weathering. Light grey, grey,
and dark grey indicate low, medium, and high oil concentrations, respectively.
Solid bars represent fresh oil; hatched bars show weathered oil. Different let-

ters indicate statistically significant differences (p < 0.05)
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No oil
Fresh low
Weathered low
Fresh medium
Weathered medium
Fresh high
Weathered high
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Proportion of time in oilProportion of time in no oil
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Fig. 2. Proportion of time spent in the side of the tank containing no oil (left) and oil (right) for Fundulus grandis. Light grey,
grey, and dark grey indicate low, medium, and high oil concentrations, respectively. Solid bars represent fresh oil; hatched 

bars show weathered oil. NS: not significant, *p < 0.10, **p < 0.05, ***p < 0.001
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Fig. 3. As in Fig. 2, but for Poecilia latipinna
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Fig. 4. As in Fig. 2, but for Cyprinodon variegatus
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~40% of the time in oil, perhaps a biologically mean-
ingful (p < 0.10) avoidance (Table 1, Fig. 4). P. lati -
pinna did not exhibit a response to fresh oil at low
concentrations, with over 40% of the trial duration
spent in the oiled portion of the tank.

DISCUSSION

The devastating effects of the 2010 DWH disaster
included loss of human and marine life, as well as
negative effects on coastal ecosystems such as accel-
eration of marsh loss (Silliman et al. 2012). While
some negative effects on fishes have been reported
offshore (Murawski et al. 2014) and in laboratory
studies on inshore fishes, the consequences for many
coastal fishes remain uncertain. Although controlled
manipulations of oil demonstrate significant negative
physiological effects, surveys of communities and
populations in affected areas have yet to demonstrate
long-term consequences of these individual-level
effects (Fodrie et al. 2014).

Results presented here demonstrate that these
estuarine fishes exhibit strong aversions for fresh oil
at medium and high concentrations. However, at low
concentrations of fresh oil, only Fundulus grandis
responded significantly. In contrast, fishes in choice
trials with weathered oil did not display significant
preference patterns at any concentration. Given the
range of oil constituents found in nearshore ecosys-
tems such as salt marshes (Turner et al. 2014a,b),
these results highlight the need for a more detailed
and ecologically relevant assessment of laboratory
assays, as many controlled experiments to date only
use fresh, unweathered oil to make predictions
regarding the effects of oil in the field. In addition,
laboratory experiments measuring physiological and
morphological responses may overestimate field re -
sponses due to these experimental artifacts (but see
Whitehead et al. 2012). As such, the discrepancy in
studies to date could be due in part to organism
avoidance of freshly oiled, and hence more toxic,
sediment.

The origin of oil offshore in Louisiana allowed con-
siderable time and opportunity for enhanced weath-
ering and ultraviolet degradation of oil before it
reached nearshore ecosystems. When oil finally
arrived onshore, the more toxic chemicals (such as
naphthalenes) had already precipitated, leaving the
more stable, longer carbon chains that dissolve less
readily into the water and are less toxic to nekton
(Reddy et al. 2012, Turner et al. 2014a,b). As such, it
is plausible that fish use these most toxic compounds

as a cue to guide avoidance behavior. Future re -
search should focus on isolating individual con-
stituents of oil that may trigger the responses ob -
served in the current study. Further, it is unclear
whether skin irritation from aromatic compounds, or
olfactory detection of oil drives the behavioral pat-
terns documented here, and future research should
be directed at de termining the relative roles of each
mechanism.

These results point to the importance of conducting
oil studies at relevant concentrations and degrees of
weathering. In nearshore areas, crude oil is usually
highly weathered and less toxic to fishes (although it
is important to note that no mortality was detected in
these trials, even with fresh oil) (Reddy et al. 2012).
Unweathered crude, however, may be found in
coastal areas in the center, protected portion of tar
balls, and bound to sediments in anoxic areas where
degradation is slower (Mendelssohn et al. 2012).

Contaminants, such as petroleum hydrocarbons,
have long been known to alter animal behavior (Weis
et al. 2001). Oil-induced avoidance behavior has
been documented in a number of aquatic organisms.
At very small scales, calanoid copepods consistently
alter their swimming behavior to avoid patches of
water-soluble fractions of diesel oil, suggesting that
behavioral capacities could minimize exposure (Seu-
ront 2010). Likewise, acoustic recordings have con-
firmed that sperm whales that historically used the
area near the DWH spill site relocated to a site far-
ther away from the oiled area (Ackleh et al. 2012).
Other marine mammals such as dolphins are known
to avoid oil mousse (Smultea & Würsig 1995), and
have even been trained to detect oil via olfactory
mechanisms (Geraci et al. 1983).

Previous studies have also documented the re -
sponse of fishes to oil contamination. For example,
Farr et al. (1995) manipulated concentrations of fluor -
anthene, a toxic polycyclic aromatic hydrocarbon,
and found that fathead minnows Pimephales prome-
las avoided contaminated waters down to 8.6 µg l−1.
Similarly, both striped bass Morone saxatilis and
rainbow trout Oncorhynchus mykiss avoided effluent
from a California oil refinery (Carr et al. 1990). In the
marine environment, juvenile flatfishes (Moles et al.
1994) and juvenile spot Leiostomus xanthurus
 (Hinkle-Conn et al. 1998) avoided heavily oiled sedi-
ments, but not lightly oiled areas.

Given that the fishes included in this study did not
avoid weathered crude or (in some cases) low con-
centrations of fresh oil, a rich field of future study
includes the sublethal, indirect effects of oil on fauna.
Some organisms, such as fiddler crabs and terrestrial
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arthropods, exhibited an initially negative response
to oil that came ashore (McCall & Pennings 2012).
However, with less water-soluble compounds to af -
fect organisms at higher weathering rates (Mendels -
sohn et al. 2012), which comprised the bulk of the oil
that came ashore (Reddy et al. 2012), coupled with
the lack of strong population/ community responses
(Fodrie et al. 2014), it is likely that fishes in affected
areas were exposed to crude oil at sublethal levels.

To date, several studies have noted the sublethal
consequences of oil. Field mesocosms in a range of
contaminated areas found that penaeid shrimps grow
more slowly in heavily oiled areas (Rozas et al. 2014).
Specifically, a 60% decrease in brown shrimp Farfan-
tepenaeus aztecus daily growth rate was ob served af-
ter only 7 d. While varying sensitivities to contamina-
tion may influence food sources (Brzorad & Burger
1994, Thorne & Thomas 2008), oil also re duces forag-
ing activity. Foraging rates of darter gobies Gobionel-
lus boleosoma were reduced by 50 to 100% in the
presence of diesel-contaminated sediments, but not
at low concentrations (Gregg et al. 1997). Likewise,
spot exhibited decreased feeding strikes within
30 min during feeding trials in sediments contami-
nated with diesel fuel (Hinkle-Conn et al. 1998). A
broader understanding of these sublethal effects in
salt marsh ecosystems is needed to fully assess food
web alterations in the wake of the DWH spill.

The results of this study contribute significantly to
our understanding of estuarine fish resilience to dis-
asters such as oil spills. Behavior likely plays a key
role in fish persistence in nearshore environments
such as salt marshes. However, it is noteworthy that
many fishes may not exhibit such behavior and may
not be as resilient to these contaminants. Marsh
fishes, such as those used here, are exposed to a wide
range of environmental conditions including extreme
fluctuations in temperature and dissolved oxygen,
and as a result may be more tolerant of stressful con-
ditions. The fauna and flora of Louisiana have been
exposed to oil for centuries through natural seeps
and human exploitation. Therefore, it is possible that
exposure may have been a selecting force for fishes
exhibiting such behavioral responses, but future
research needs to confirm this. This study establishes
important baseline information regarding the behav-
ior of fishes exposed to these contaminants, with crit-
ical implications for the continued management of
coastal ecosystems.
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Fig. A1. Alkanes measured in sediment of each treatment for fresh and weathered oil trials (where low, medium, and high oil 
concentrations were 10, 20, and 40 ml oil l−1 of sediment)

Appendix. Sediment oil concentrations used in behavior experiments
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Fig. A2. Aromatics measured in sediment of each treatment for fresh and weathered oil trials (where low, medium, and high oil 
concentrations were 10, 20, and 40 ml oil l−1 of sediment)
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