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ABSTRACT: Technological advances in recent years have seen an explosion of tracking and sta-
ble isotope studies of seabirds, often involving repeated measures from the same individuals. This
wealth of new information has allowed the examination of the extensive variation among and
within individuals in foraging and migration strategies (movements, habitat use, feeding behav-
iour, trophic status, etc.) in unprecedented detail. Variation is underpinned by key life-history or
state variables such as sex, age, breeding stage and residual differences among individuals
(termed ‘individual specialization'). This variation has major implications for our understanding of
seabird ecology, because it affects the use of resources, level of intra-specific competition and
niche partitioning. In addition, it determines the responses of individuals and populations to the
environment and the susceptibility to major anthropogenic threats. Here we review the effects of
season (breeding vs. nonbreeding periods), breeding stage, breeding status, age, sex and individ-
ual specialization on foraging and migration strategies, as well as the consequences for population

dynamics and conservation.
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INTRODUCTION

The burgeoning of tracking and stable isotope
studies of seabirds and other marine predators since
the 1990s has provided a wealth of information on
numerous aspects of their ecology and life-history,
including the striking variation in movement pat-
terns and foraging behaviour of individuals (Phillips
et al. 2008, Wakefield et al. 2009a). Until relatively
recently, this variation was examined largely by test-
ing for effects of factors such as species, colony, sex,
age, year, season (breeding vs. nonbreeding period),
breeding phase or breeding status. Much less atten-

*Corresponding author: raphil@bas.ac.uk

tion was paid to the residual variation among individ-
uals after accounting for these group effects. This
residual variation was considered to define 'individ-
ual specialization’ in the seminal review by Bolnick
et al. (2003) and is also the focus of research on ‘be-
havioural syndromes’ or ‘animal personalities’ in the
field of animal behaviour (Dall et al. 2012). Research
on individual variation has burgeoned in the last
decade, spurred partly by reductions in cost and
mass of tracking devices, allowing larger sample
sizes, and by the increasing use of more powerful sta-
tistical techniques (Carneiro et al. 2017, this Theme
Section).
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Most seabirds show striking changes in distribu-
tion associated with stage of the annual cycle. Many
species are migratory, making directed movements
from breeding to nonbreeding grounds to exploit
seasonal peaks in prey abundance or to avoid
inclement weather, with implications for survival and
subsequent fecundity (Daunt et al. 2014, Reiertsen et
al. 2014). The changing degree of central-place con-
straint during the breeding period—from pre-laying
through incubation, brood-guard and later chick-
rearing (post-guard)—can lead to major shifts in dis-
tribution, activity patterns or diet within individuals
(Hedd et al. 2014, Quillfeldt et al. 2014). There may
be within-breeding-season (date-related) differences
in distribution or diet, which reflect extrinsic changes
in the environment (Phillips et al. 2009b). In addition,
some seabirds (particularly albatrosses and petrels)
adopt a bimodal (or dual) foraging strategy during
chick-rearing, in which adults alternate between
foraging close to the colony and increasing feeding
frequency for the benefit of the chick, and foraging
further afield to recover their own body condition
(Chaurand & Weimerskirch 1994, Weimerskirch et
al. 1994).

There is mounting evidence that movements and
distributions of seabirds are influenced by age and
breeding status. Failed breeders often depart on their
migration sooner than successful ones (Phillips et al.
2005, Bogdanova et al. 2011, Hedd et al. 2012), and
they may spend the late breeding season in the same
areas as deferring (sabbatical) breeders, but be par-
tially or completely segregated from active breeders
(Phillips et al. 2005, Gonzdlez-Solis et al. 2007, Reid
et al. 2014). In this way, nonbreeders (failed or defer-
ring) may be avoiding competition with breeders
(Clay et al. 2016). Juvenile and immature seabirds
avoid competition with adults—possibly to compen-
sate for poorer foraging skills—by using less produc-
tive habitats and increasing their foraging time
(Daunt et al. 2007b, Fayet et al. 2015). Their distribu-
tions frequently differ from those of adults, often
markedly so during the nonbreeding period even
though adults are no longer limited by the central-
place foraging constraint (but see Péron & Grémillet
2013, Gutowsky et al. 2014, de Grissac et al. 2016).

Age effects on foraging ability are often apparent
amongst breeders: younger or less experienced birds
may forage less efficiently, with implications for breed-
ing success (Daunt et al. 2007b, Limmer & Becker
2009, Harris et al. 2014a, Le Vaillant et al. 2016), or
feed at lower trophic levels (Le Vaillant et al. 2013).
Inferior foraging success among younger individuals
is thought to reflect the poorer skills in identifying or

catching prey or in selecting suitable locations,
weaker motor control or physiological fitness (e.g.
cardiovascular or muscular performance) of young
birds or the selective disappearance of poor pheno-
types among the adult population. Although there is
evidence that foraging ability can decline in old age
(Catry et al. 2006), changes in behaviour may not be
detectable—despite physiological ageing (Elliott et
al. 2015)—or are apparent only in particular environ-
ments (Lecomte et al. 2010, Froy et al. 2015). More-
over, differences between old and young animals can
be difficult to interpret, because lower activity (e.g.
more time on the water recorded by a leg-mounted
immersion logger) might indicate either inferior
physiological function or greater efficiency allowing
more discretionary time to be spent resting (Catry et
al. 2011).

Sexual segregation and other between-sex differ-
ences in foraging behaviour are apparent in many
seabirds. This may reflect habitat specialization or
avoidance of competition in sexually dimorphic spe-
cies and sex role specialization or sex-specific nutri-
ent requirements in monomorphic or dimorphic spe-
cies (Lewis et al. 2002, Phillips et al. 2004, 2011). Sex
differences in distribution and behaviour of seabirds
tend to be more apparent during particular periods,
for example during pre-laying (presumably related
to sex-role partitioning of nest defense), affecting
attendance patterns (Hedd et al. 2014, Quillfeldt et
al. 2014). However, such effects are far from univer-
sal; despite a degree of spatial segregation, activity
patterns of male and female albatrosses are compa-
rable during the breeding and nonbreeding periods,
suggesting little difference in prey type or foraging
method (Mackley et al. 2011, Phalan et al. 2007).
Similarly, in the 2 recent studies that recorded sex
differences in the proportions of residents and mi-
grants, the effects were in opposite directions (Pérez
et al. 2014, Weimerskirch et al. 2015).

Variation among and within individuals in foraging
distribution and behaviour has major implications
for our understanding of seabird ecology because it
affects the use of resources, level of intra-specific
competition and niche partitioning (Phillips et al.
2004, de Grissac et al. 2016). In addition, it deter-
mines the responses of individuals and populations to
environmental drivers (including climatic change)
and the overlap with, and hence susceptibility to
major anthropogenic threats, including fisheries and
pollutants (Phillips et al. 2009a, Granadeiro et al.
2014, Patrick et al. 2015). Individual variation is also
at the root of carry-over effects, whereby processes in
one season have consequences in subsequent sea-
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sons (Harrison et al. 2011). Surprisingly, however,
there are rarely demonstrable life-history conse-
quences of individual consistency in foraging strate-
gies per se despite the many studies of adult quality
(consistent individual differences in breeding per-
formance) in seabirds (Lescroél et al. 2009, Crossin et
al. 2014, but see Patrick & Weimerskirch 2017).

Here we review the intrinsic group effects under-
lying individual variation in foraging and migration
patterns of seabirds, including breeding stage, season
(breeding vs. nonbreeding period), breeding status,
age, sex and—after those have been accounted for—
the incidence, causes and consequences of the indi-
vidual effects that remain. We consider these last,
residual effects to be synonymous with individual
specialization sensu Bolnick et al. (2003) and expect
specialists to show repeatability or consistency in
foraging distribution, behaviour or diet. We do notre-
view effects of colony, as these may reflect differences
in resource availability or habitat accessibility, nor
effects of date or year per se, as these reflect environ-
mental variation and are extrinsic to individual deci-
sions and trade-offs. We explore whether the degree
of variation among and within individuals (i.e. both
groups effects and specialization) depends on phylo-
geny, biogeography or other factors and focus on the
consequences for life-histories and population dy-
namics and the implications for seabird conservation.
The impetus for this review and for this Theme
Section on ‘Individual variability in seabird foraging
and migration’ in Marine Ecology Progress Series was
the session on 'Individual variation in movement
strategies' at the 2nd World Seabird Conference in
Cape Town, South Africa, 27-30 October, 2015.

EFFECTS OF THE ANNUAL CYCLE

Breeding stage and season
(breeding vs. nonbreeding period)

Changes in seabird diet across the annual cycle,
particularly over different stages of the breeding
period, have been studied for several decades (Bar-
rett et al. 2007), but until the advent of suitable track-
ing technologies, information on year-round forag-
ing behaviour of seabirds was scarce. Subsequently,
many studies have recorded foraging distribution
and behaviour of individuals over extended periods,
showing that these vary markedly throughout the
annual cycle; some of these changes reflect differ-
ences in food availability or the underlying biophysi-
cal environment, and others are directly related to

changes in reproductive demands and central-place
foraging (Phillips et al. 2008, Gonzalez-Solis & Shaf-
fer 2009). Energy requirements and breeding duties
change across the annual cycle, limiting foraging in
time and space (including to the most productive
habitats) to different extents.

During pre-laying, birds visit the colony frequently
or remain there for a prolonged period for pair bond-
ing and nest defence, but they are still free from
parental duties and may have time available for long
trips. Although the constraints for males and females
may differ, individuals typically forage further from
the colony and in more productive waters than in
later stages (Phillips et al. 2006, Paiva et al. 2008,
Pinet et al. 2012, Hedd et al. 2014). During incuba-
tion, most seabirds alternate incubation bouts, with
one parent incubating the clutch while the other is at
sea. In penguins, albatrosses, petrels and alcids,
birds may fast for several weeks on the nest while the
partner engages in foraging trips that are longer and
further afield than during chick rearing (Hull 2000,
Phalan et al. 2007, Ito et al. 2010, Péron et al. 2010,
Hedd et al. 2014). Nevertheless, trips usually shorten
when hatching approaches, allowing the chick to be
fed within a few days (Weimerskirch et al. 1997,
Gonzéalez-Solis 2004). In gulls and skuas, however,
incubation bouts are relatively short, and the forag-
ing range during that phase can be similar or shorter
than during chick rearing (Carneiro et al. 2014, Cam-
phuysen et al. 2015).

During brooding, the parents alternate foraging
with guarding the chicks, which are rarely left unat-
tended in order to reduce exposure to the elements or
predators. In pelagic seabirds, this is often regarded
as the period with the greatest energy requirements,
since an adult must forage both to meet its own
demands during the subsequent brooding stint and
those of the chicks (Ricklefs 1983). In some species
(including albatrosses, petrels and penguins), parents
are forced to forage closer to the colony than in any
other stage (Hull 2000, Charrassin & Bost 2001,
Phillips et al. 2004, Gonzalez-Solis et al. 2007), even
though the areas visited may not be optimal, leading
to progressive deterioration in parental body condition
(Weimerskirch & Lys 2000, Green et al. 2009). In addi-
tion, the requirements of the chick in terms of prey
energetic or nutritional content, size or digestibility
may necessitate a change in foraging behaviour of the
adult (Davoren & Burger 1999, Isaksson et al. 2016).
Several studies have shown that parents feed their
chicks with a high-quality diet, for example selecting
lipid-rich fishes (Wilson et al. 2004, McLeay et al.
2009, Bugge et al. 2011, Danhardt et al. 2011), and a
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failure to do so may reduce chick survival (Annett &
Pierotti 1999, Grémillet et al. 2008). Alternatively, se-
lection of high quality prey may reflect the need to
maximise net energy gain per unit foraging effort for
parents that are unable to carry more than one item in
their bill (Wilson et al. 2004). In species delivering
mainly undigested food, chicks are limited in terms
of the size of prey they can swallow, and parents are
typically forced to seek small items, steadily increas-
ing the size with chick age, which may require parents
to change prey types and foraging areas over the
chick-rearing period (Pedrocchi et al. 1996, Rodway &
Montevecchi 1996, McLeay et al. 2009).

In many species there is a post-brooding period
(créche in penguins) when parents leave chicks unat-
tended except when delivering meals so that they can
increase trip length. Initially, the foraging range usu-
ally remains more constrained than during incubation
(Phillips et al. 2004, Saraux et al. 2011, Froy et al.
2015), presumably because chicks have a lower fast-
ing capability than incubating adults until the mid- to
late chick-rearing phase (Phillips & Hamer 1999). Trip
duration tends to increase and parents forage further
away from the colony as the chick-rearing period pro-
gresses (Weimerskirch & Lys 2000, Dall' Antonia et al.
2001, Rishworth et al. 2014b). These longer trips are
likely prompted by the chicks' increased fasting capa-
bility and energetic demand, as well as a deterioration
in food availability or an increase in foraging con-
specifics enhancing density-dependent competition
near the colony (Rishworth et al. 2014b). The ability to
increase intervals between feeding is limited by the
maximum payload, which is inversely related to adult
body mass in Procellariiformes (Phillips & Hamer
2000). Food delivery rates also depend on whether the
adults forage in coastal or inshore waters and deliver
food that is fresh and carried in the bill (terns and
alcids), partially-digested in the stomach (gulls, pen-
guins and other taxa) or further digested to an energy-
dense stomach oil in the proventriculus (Procellari-
iformes; except diving petrels, Pelecanoididae); in this
last group, the single chick stores extensive fat re-
serves, allowing the adults to exploit more remote ar-
eas (Ricklefs 1983, Phillips & Hamer 1999). Changes
in trip duration during breeding can be detected using
stable isotopes, and an increase in foraging range
may be associated with an expansion of the isotopic
niche (Ceia et al. 2014).

For breeding, seabirds need land that is free of ter-
restrial predators. Such breeding grounds may be
distant from productive foraging sites. One mecha-
nism for coping with low food availability close to the
breeding colony is to adopt a so-called ‘dual forag-

ing' strategy, when parents alternate between short
and long foraging trips to balance their own ener-
getic requirement with that of the chick (Chaurand &
Weimerskirch 1994, Weimerskirch et al. 1994). Dur-
ing these short trips, parents forage within shorter
distances, maximising provisioning rates; however,
this apparently reduces their body condition, causing
the adult to switch to more distant and more produc-
tive waters with predictable food resources (frontal
zones, neritic areas, etc.) to restore its own reserves.
The dual foraging strategy is seen in many alba-
trosses, shearwaters and other petrels, but there is a
great deal of variability among species and popula-
tions, potentially related to differences in foraging
strategies and resource distribution around colonies
or between years (Granadeiro et al. 1998, Baduini &
Hyrenbach 2003, Phillips et al. 2009b). A similar but
less flexible strategy has also been postulated for
penguins (Ropert-Coudert et al. 2004, Saraux et al.
2011). Dual foraging has also been described in auks
(Welcker et al. 2009), possibly because the energetic
cost of transit in this group is particularly high (Costa
1991, Thaxter et al. 2010).

Changes in foraging behaviour also occur in the
nonbreeding period. After breeding, most species of
seabirds migrate to more suitable habitats, avoiding
low temperatures, shorter days and reduced food
availability around colonies. In some populations,
individuals move to a post-breeding, stopover area,
presumably offering good foraging opportunities at
that time of year, where they may spend considerable
time before departing for their main wintering grounds
(Anker-Nilssen & Aarvak 2009, Frederiksen et al.
2012, Bogdanova et al. 2017, this Theme Section).
Both conventional diet (stomach content analysis)
and stable isotope studies indicate that wintering
seabirds can change their diet or widen their trophic
niche, since individuals are no longer central-place
foragers and are free to select their favoured habitat
or prey (Cherel et al. 2007, Karnovsky et al. 2008,
Hedd et al. 2010, Harris et al. 2015). It is important to
note that we lack knowledge for most seabirds of
their prey during the winter; although stable isotope
studies offer a partial solution, ideally these need to
control for changes in isotopic baselines because of
the scale of seabird movements (Meier et al. 2017).

Activity levels decrease during part of or the entire
nonbreeding period in Procellariiformes (Mackley et
al. 2011, 2010, Cherel et al. 2016), sulids (Garthe et al.
2012), skuas (Magnusdottir et al. 2014, Carneiro et al.
2016) and alcids (Mosbech et al. 2012). Reasons for
this decrease may include lower energetic demands,
freedom from parental care duties and removal of the
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central-place foraging constraint, higher food avail-
ability or lower costs of thermoregulation. In addition,
productive nonbreeding grounds may allow for a sit-
and-wait foraging strategy that is more energy-
efficient, or food availability may be enhanced by the
activities of subsurface predators or fisheries (Péron
et al. 2010). Seabirds generally, but not always, moult
in the nonbreeding period to avoid overlap with
other energetically demanding processes, such as re-
production or migration (Bridge 2006, Catry et al.
2013b). This may result in flight impairment, which
would explain a decrease in activity levels in the win-
ter in some species (Cherel et al. 2016), or in flight-
lessness, which may drive movements (particularly
by auks) to specific moulting areas (Linnebjerg et al.
2013, Frederiksen et al. 2016).

Lower activity during the nonbreeding period is
far from universal, and species that breed in high
latitudes, are resident year-round, or have limited
capacity to migrate, cope with winter conditions by
increasing their activity levels. Indeed, foraging time
of cormorants or shags breeding at high latitudes
peaks in mid- to late winter, possibly due to reduced
prey availability or high energetic costs associated
with thermoregulation (Grémillet et al. 2005, Daunt
et al. 2006, Lewis et al. 2015), and penguins some-
times dive longer and deeper to exploit less accessi-
ble prey during winter (Moore et al. 1999, Charrassin
& Bost 2001, Green et al. 2005).

Breeding status

Studies of seabird foraging and movements during
the breeding season usually focus on breeding adults
because of the relative ease with which they can be
caught for logger deployment and retrieval. How-
ever, an important component of the breeding popu-
lation comprises individuals that are not breeding or
have failed in their breeding attempt, and an increas-
ing number of studies aim to quantify the foraging
dynamics of these groups and to test whether they
show different behaviours compared to breeding
adults. Much of the attention has been directed at
failed breeders, whose failure may have been natu-
ral, a consequence of the deployment, or induced as
part of a manipulative experiment (Phillips et al.
2005, Bogdanova et al. 2011, Ponchon et al. 2014,
2015). Failed breeders often continue to associate
with the colony, operating as central-place foragers
but expanding their foraging areas (Gonzdlez-Solis
et al. 2007). The spatial overlap with breeders varies
among populations; it can be high (Ponchon et al.

2014), moderate (Phillips et al. 2008), or there may be
marked segregation (Jaeger et al. 2014, Reid et al.
2014, Clay et al. 2016). Further, failed breeders may
make visits to other colonies when breeders are still
actively rearing chicks; this behaviour is interpreted
as prospecting potential new breeding sites and may
be motivated by having failed at the current location
(Fijn et al. 2014, Ponchon et al. 2014, 2015). In con-
trast, successful breeders do not undertake prospect-
ing trips or only do so after breeding is finished (Fijn
et al. 2014, Ponchon et al. 2014, 2015).

Quantifying differences in foraging and movements
between breeding and nonbreeding individuals (the
latter including deferring breeders and older pre-
breeders, but not failed breeders) during the breeding
season is hampered by the difficulty in capturing
nonbreeders to deploy data loggers. There is consid-
erable indirect evidence from observations at breed-
ing sites that nonbreeders often attend the colony in
the breeding season and act as central-place foragers,
suggesting that foraging overlap with breeders would
be substantial (Aebischer 1986, Harris & Wanless
1997). This has been confirmed by tracking black-
browed albatross Thalassarche melanophris at South
Georgia (Phillips et al. 2005), but in the same species
elsewhere and in Cory's shearwater Calonectris bo-
realis, deferring adults segregate isotopically from
breeders, indicating differences in their foraging
niche (Campioni et al. 2015). Some of the most com-
pelling evidence for spatial segregation based on
breeding status during the breeding season is for bi-
ennial breeders such as the wandering albatross
Diomedea exulans and grey-headed albatross Tha-
lassarche chrysostoma, in which a proportion of indi-
viduals spend the sabbatical period entirely at sea,
thousands of kilometres from the colony (Weimers-
kirch et al. 2015, Clay et al. 2016).

At the end of the breeding season, timing of depar-
ture from breeding colonies is strongly dependent on
breeding status, with failed and deferred breeders
typically leaving significantly earlier than successful
breeders (Phillips et al. 2005, 2007, Bogdanova et al.
2011, Hedd et al. 2012, Catry et al. 2013a). Carry-
over effects of breeding status on migration may
persist into the nonbreeding period, with evidence
that failed breeders arrive at wintering grounds early
and depart the wintering grounds later or earlier,
depending on the study species (Phillips et al. 2005,
Catry et al. 2013a, Bogdanova et al. 2017). There may
also be differences in migration destination; in black-
legged kittiwakes Rissa tridactyla, failed breeders
wintered further from the breeding colony on aver-
age than successful breeders (Bogdanova et al.
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2011), and evidence from stable isotope analyses
suggested that failed wandering albatrosses differed
from successful and deferred breeders in terms of
distribution in the following winter (Jaeger et al.
2014). Such differences are not always apparent,
however, and high overlap of individuals of differing
breeding status during the winter has been observed
in other studies (Phillips et al. 2005, 2007, Hedd et al.
2012, Clay et al. 2016).

EFFECTS OF AGE
Age-specific foraging and movements
Comparisons of juveniles and adults

A long-standing theory in avian ecology is that
juveniles have reduced survival probability because
they have a lower foraging proficiency, resulting
from a lack of experience or physical ability; this the-
ory is supported by widespread empirical evidence
across many avian species (Marchetti & Price 1989,
Wunderle 1991). These are topics of particular inter-
est in seabirds because of their slow maturity, which
suggests that the development of foraging is complex
and requires an extended period of learning. A list of
studies that tested for differences in foraging and
migration between juveniles, immatures and adult
seabirds is provided in Table 1. Early work on sea-
birds, based primarily on visual observations of feed-
ing individuals or flocks, provided clear evidence
that juveniles had lower foraging success than adults
(Orians 1969, Dunn 1972, Burger & Gochfeld 1981,
Porter & Sealy 1982, Greig et al. 1983, MacLean 1986).
Comparisons of multiple age classes showed pro-
gressive improvement in performance in the pre-
breeding years (Orians 1969, Porter & Sealy 1982,
MacLean 1986), and more recent studies indicate
that foraging effort and skills develop rapidly after
fledging (Yoda et al. 2004, Daunt et al. 2007b, Guo et
al. 2010, Orgeret et al. 2016); however, the foraging
proficiency of juveniles throughout their first winter
remains lower than that of adults, linked to a lower
survival probability (Daunt et al. 2007b, Orgeret et al.
2016). Indeed, in terms of survival prospects, the crit-
ical period is around independence, which, depend-
ing on the species, may occur at fledging or be a
gradual process as parents progressively reduce post-
fledging provisioning rate (Daunt et al. 2007b, Riotte-
Lambert & Weimerskirch 2013, Orgeret et al. 2016).

Biologging and biotelemetry have been instrumen-
tal in the study of movements during the juvenile

phase (Table 1). It has long been apparent from ring-
ing recoveries that juvenile seabirds often disperse
long distances and generally have a wider distri-
bution than adults (Weimerskirch et al. 1985), but at-
tachment of loggers to chicks has enabled the critical
months after fledging to be investigated in detail.
Fledglings typically undertake rapid and large-scale
movements in the first few months and (in flying sea-
birds) appear to target favourable wind patterns,
sometimes delaying departure until these become
available (Kooyman et al. 1996, Akesson & Weimers-
kirch 2005, Trebilco et al. 2008, Alderman et al. 2010,
Riotte-Lambert & Weimerskirch 2013, Blanco et al.
2015, de Grissac et al. 2016, Weimerskirch et al. 2016).
Such movements can lead to striking segregation
from adults in the nonbreeding period (Kooyman et
al. 1996, Jorge et al. 2011, Riotte-Lambert & Weimers-
kirch 2013). However, this is not universal, and the
degree of segregation seems largely to stem from
among-species variation in adult movements, with
the greatest segregation in species where adults stay
close to colonies throughout the year (Grémillet et al.
2015, de Grissac et al. 2016). Juveniles often forage in
less productive waters than adults, which may be key
to explaining their lower survival probability (Thiebot
etal. 2013, Gutowsky et al. 2014, Jaeger et al. 2014).

Detailed analyses suggest that it may take juve-
niles several months to attain the flight ability of
adults (Riotte-Lambert & Weimerskirch 2013). In asso-
ciation with this, the structure of their movements
also differs markedly from adults, with evidence of
longer, more sinuous pathways in juveniles (Péron &
Grémillet 2013, Riotte-Lambert & Weimerskirch 2013,
Missagia et al. 2015, de Grissac et al. 2016). There is
considerable interest in how individuals are able to
navigate during this juvenile period (Guilford et al.
2011, Fayet et al. 2015, de Grissac et al. 2016). How-
ever, understanding the mechanisms is challenging
because of the lack of information on potential cues
(ocean features, presence of conspecifics, etc.), but
detailed analyses of movements suggest extensive
variation among species in the relative importance of
inheritance, cultural mechanisms and acquired mem-
ory through exploration (Guilford et al. 2011, Péron &
Grémillet 2013, de Grissac et al. 2016).

The immaturity period between the juvenile (first
winter) phase and adulthood is also a challenge to
study. Device deployments are restricted to the few
species where immatures can be captured (generally
at colonies), as loggers and transmitters deployed on
feathers on the last occasion when these birds were
accessible on land (at or before fledging) remain
secure only until the first moult, and those attached
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to leg rings require the individual to be recaptured
after return to the colony (Daunt et al. 2007b, de Gris-
sac et al. 2016). Tracking has demonstrated that
immatures show limited or no segregation from
adults during the nonbreeding season until the point
when adults return to colonies in preparation for
breeding (Petersen et al. 2008, Péron & Grémillet
2013). Older immatures may also associate with colo-
nies and operate as central-place foragers, although
trip structure, trip duration and resource use differ
from those of breeding adults (Votier et al. 2011,
Riotte-Lambert & Weimerskirch 2013, Campioni et
al. 2015). However, immatures also undertake pros-
pecting movements, where they visit multiple colo-
nies either during the breeding season or autumn
migration, resulting in seasonal segregation from
breeding adults from the same site (Votier et al. 2011,
Péron & Grémillet 2013). In addition to these spatial
differences associated with key age-specific behav-
iours, immatures exhibit lower foraging efficiency
than adults (Fayet et al. 2015), supporting the theory
that the acquisition of foraging skills is a lengthy and
complex process in seabirds that may in part explain
the long immaturity phase.

Adults

An increase in reproductive success with age is
widespread among iteroparous breeders (Clutton-
Brock 1988, Newton 1989, Forslund & Part 1995).
One of the principal mechanisms underpinning this
pattern is an improvement in foraging performance
with age (Curio 1983). Seabirds show marked changes
in foraging performance in early life, and for some
species, the immature period may be sufficiently
long that individuals have reached full foraging
capability by the time they recruit into the breeding
population (Weimerskirch et al. 2005). Alternatively,
individuals may require additional skills or experi-
ence to forage successfully both for themselves and
their young (Haug et al. 2015).

Despite growing evidence of differences in forag-
ing performance between young and older breeders
(Table 2), there have been few definitive studies of
the wunderpinning mechanisms. Young breeders
may be less successful at foraging because they are
poorer at locating prey, physically less capable
(Curio 1983) or because they are showing restraint
because of their higher residual reproductive value
(Williams 1966). A further challenge is to establish
whether individuals improve their foraging perform-
ance with age, and if the higher average perform-

ance of older age classes is due to differential sur-
vival rates of individuals of differing foraging abili-
ties (Smith 1981, Nol & Smith 1987, Reid et al. 2010).
Longitudinal studies are therefore essential to es-
tablish the relative importance of within-individual
improvements and natural selection (Limmer &
Becker 2009). In addition, it has proved difficult to
tease apart age from experience, since the two are
closely correlated (Part 1995). Finally, most seabirds
breed seasonally, and younger individuals usually
breed later in the year and less successfully; as such,
intrinsic performance is potentially confounded by a
deterioration in environmental conditions later in the
season, and experimental approaches are required to
tease these processes apart (Daunt et al. 1999, 2007a).

Habitat use and foraging behaviour and efficiency
may vary among different age classes. Although pro-
gressive changes in habitat type with age during the
nonbreeding season have been detected using stable
isotope analyses (Jaeger et al. 2014), in another recent
study, there were no significant differences in migra-
tion destinations or strategies between adult age
classes (Pérez et al. 2014). More attention has focussed
on age-related foraging performance during the
breeding season (Table 2). In line with theory, young
breeders often obtain less food than older breeders
(Daunt et al. 2007a, Limmer & Becker 2009, Le Vaillant
et al. 2013), and their diet may be of lower quality
(Navarro et al. 2010), with impacts on chick growth
rates and reproductive success (Daunt et al. 2001,
Limmer & Becker 2009). Such patterns may result
from age-specific differences in foraging efficiency
(Daunt et al. 2007a, Limmer & Becker 2009). Older
breeders may have greater experience in locating
profitable feeding areas, as shown in Cory's shearwa-
ter where site fidelity to productive areas was higher
in experienced age classes (Haug et al. 2015). Older
individuals may also have physical advantages; for
example, Le Vaillant et al. (2012, 2013) showed that
they dive deeper, experience reduced underwater
drag and undertake more prey pursuits than younger
breeders. Older breeders may increase foraging effort
to maximise chick provisioning rates, in particular
when environmental conditions are poor (Daunt et
al. 2007a). Alternatively, they may reduce foraging
effort, potentially to maximise time spent on other
activities such as resting or guarding the young
(Weimerskirch et al. 2005, Zimmer et al. 2011, Harris
et al. 2014a, Lewis et al. 2015, Le Vaillant et al. 2016).
Young individuals may increase foraging effort to
compensate for their reduced efficiency; for example,
Weimerskirch et al. (2005) showed that younger and
older breeders expended similar foraging effort dur-
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ing daylight, but younger breeders foraged more at
night. However, interpretation of foraging effort is
challenging in the absence of data on foraging effi-
ciency (requiring data on energy expenditure, mass
and quality of prey, etc.), since it is not clear whether
increased effort might be a compensation for poor ef-
ficiency or, alternatively, if it maximises energy gain
when efficiency is high. Further, such patterns are
probably context dependent, with age-specific patterns
in foraging effort and efficiency likely to be more pro-
nounced during poor environmental conditions (Daunt
et al. 2007a).

Considering the opposite end of the breeding life-
span, there is widespread evidence that senescence
leads to a decline in breeding success in the oldest
age classes (Froy et al. 2013, Nussey et al. 2013). Al-
though the mechanisms underpinning these patterns
are poorly understood, the most frequent explanation
is a reduction in foraging performance with age due
to physiological declines, reducing the resources that
can be allocated to reproduction. Accordingly, studies
have shown marked differences in the foraging per-
formance of the oldest breeding age classes in com-
parison with middle-aged birds (Table 2). Catry et al.
(2006) showed that old grey-headed albatrosses un-
dertook longer trips and gained less mass than mid-
dle-aged birds. Similarly, old male wandering alba-
trosses undertook longer trips to remote foraging
grounds and showed less foraging activity (Lecomte
et al. 2010). In little penguins Eudyptula minor, there
is spatial segregation between old and middle-aged
breeders during foraging, and the oldest age classes
show reduced diving effort (Zimmer et al. 2011, Pel-
letier et al. 2014). Differences in effort were also
apparent in a study of Cory's shearwaters, where old
individuals undertook fewer take-offs and landings
(which are energetically expensive) and spent more
time resting on the water (Catry et al. 2011).

Some studies have linked differences in activity
budgets and foraging patterns between young and
old birds to physiological declines (Catry et al. 2011),
but others have found no physiological changes and
instead interpreted this variation in terms of differ-
ences in foraging efficiency (Lecomte et al. 2010,
Weimerskirch et al. 2014). However, for reasons dis-
cussed above with regard to comparisons between
young and old individuals, interpretation of indices
of foraging effort is not straightforward in the
absence of information on energy gain. Low foraging
effort in old birds may indicate poor physical fitness,
resulting from physiological senescence, or may be
due to high foraging efficiency, linked to experience
(Catry et al. 2011, Froy et al. 2015). Furthermore,

age-related declines in foraging performance are not
universal; foraging behaviour of old Brinnich's
guillemots Uria lomvia did not differ from younger
adults, despite evidence for physiological senescence
(Elliott et al. 2015). Age-related effects can also vary
with region; in contrast to results from wandering
albatrosses tracked in the Indian Ocean (Lecomte et
al. 2010), there was very limited evidence for age-
related variation in foraging in the same species in
the southwest Atlantic, which was attributed to po-
tential differences in oceanographic conditions (Froy
et al. 2015). The ability to tease apart the effects of
age from those of extrinsic conditions would be
enhanced considerably by longitudinal approaches
that examine within-individual changes over time
(Limmer & Becker 2009, Daunt et al. 2014).

Implications for population dynamics
and conservation

Despite limited evidence to date, age-specific varia-
tion in foraging and migration is likely to have impor-
tant effects on individual fitness. In turn, heterogene-
ity in fitness among age classes will have profound
consequences for population dynamics (Caswell 2001).
One important mechanism underpinning these links
is the interaction with extrinsic effects, whereby very
young or very old individuals may be disproportion-
ately impacted by poor environmental conditions be-
cause of lower foraging efficiency (Sydeman et al.
1991). These differences may arise from age-specific
variation in susceptibility, or differences in distribution
or scheduling of migration of very young or old indi-
viduals, leading to heterogeneity in environments ex-
perienced. A key factor in quantifying effects on pop-
ulation dynamics is the extent to which age-related
variation in foraging and migration is due to ageing
effects (longitudinal changes in individuals), or pro-
gressive appearance and disappearance of different
phenotypes in the population (Limmer & Becker 2009,
Reid et al. 2010). Long-term deployments of loggers
provide opportunities to distinguish these possibilities
(Daunt et al. 2014). Effects of ageing and its inter-
action with the environment may have important
implications for conservation. Age-specific variation
in migration destinations could lead to differential ex-
posure to anthropogenic effects such as pollution or
fisheries. Equally, marine protection could benefit
some age classes more than others. Conservation and
management initiatives could potentially target those
individuals that make the highest contribution to pop-
ulation growth rate (Moreno 2003).
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EFFECTS OF SEX
General patterns and drivers

Sexual segregation of male and female birds dur-
ing foraging and migration is widespread and occurs
at a range of temporal and spatial scales (Catry et al.
2005). One of the earliest studies highlighting sexual
segregation in seabirds was on the wandering alba-
tross, based on at-sea distributions of birds sexed by
plumage (Weimerskirch & Jouventin 1987); this find-
ing was later confirmed using satellite-telemetry
(Prince et al. 1992, Weimerskirch et al. 1993). Sexual
segregation can also involve a preference by one sex
for a particular microhabitat (Table 3). In many bird
families, males winter closer and return sooner to the
breeding grounds than females (Cristol et al. 1999,
Catry et al. 2005). An extensive, but non-exhaustive
review of the recent literature on sex differences in
foraging and migration since the review by Phillips et
al. (2011) is provided in Table 3. Note that due to the
nature of the literature search (where sex, seabirds,
foraging or migration were included in the search
topic in Web of Science), there may be a bias towards
those studies that found positive sex differences.

Male and female seabirds may differ in scheduling
of migration. Female black-browed albatrosses began
migration 1 to 2 wk earlier than males and wintered
further north (Phillips et al. 2005). The same pattern
appears to be consistent across years in brown skuas
Stercorarius antarcticus (Carneiro et al. 2016). In
3 species of crested penguins Eudyptes sp., males
began migrating back to the breeding colonies ear-
lier than females (Thiebot et al. 2014b). Recent tech-
nological advances have facilitated similar studies on
smaller seabirds, which usually show a lower degree
of sexual size dimorphism or are monomorphic
(Table 3).

There are within-pair effects that appear to be
unrelated to sex; for example if there is assortative
mating of partners with similar strategies according
to arrival dates. In the Scopoli's shearwater Calonec-
tris diomedea, pair members do not migrate together
but spend a similar number of days travelling to and
from similar (but not identical) terminal nonbreeding
areas (Miller et al. 2015). This was attributed to
shared genes, given that pairs breeding in close
proximity within the same colony (which were pre-
sumed to be more closely-related) also appeared to
have similar migration strategies. In addition, paired
Kerguelen shags showed some similarity in distribu-
tion and behaviour (Camprasse et al. 2017c, this
Theme Section). Further, there was pair-wise segre-

gation in wintering niche (spatial and isotopic) in the
southern rockhopper penguin Eudyptes chrysocome
but no clear sexual segregation (Thiebot et al. 2015).

The general consensus is that sexual segregation
arises either from social dominance and competitive
exclusion by the dominant (often larger) sex, or by
habitat or niche specialization due to differences in
morphology or reproductive role (Peters & Grubb
1983). Social dominance and competitive exclusion
are particularly prevalent in dimorphic species where
one sex has an obvious physical advantage, but there
is increasing evidence for sex differences in mono-
morphic species as well (Lewis et al. 2002, Pinet et al.
2012, Hedd et al. 2014). A classic example of social
dominance is where larger, male giant petrels Macro-
nectes spp. dominate scavenging opportunities at seal
and penguin carcasses on land, where interference
competition clearly occurs, forcing females to prima-
rily forage at sea (Gonzdalez-Solis et al. 2000). In con-
trast, male and female black-browed and grey-headed
albatrosses are highly segregated during incubation
but not during brood-guard or post-chick rearing;
given that there were sex-specific differences in
flight performance but no obvious role of competitive
exclusion by the larger males, the seasonal segre-
gation was attributed to niche divergence (Phillips et
al. 2004).

In a recent review exploring the potential drivers or
correlates of sexual segregation, stable isotope ratios
rarely differed between males and females in mono-
morphic species, implying a link between sexual size
dimorphism and segregation in diet or distribution
(Phillips et al. 2011). Also, differences in §'3C (reflect-
ing carbon source) in albatrosses in the Southern
Ocean suggested the underlying mechanism was re-
lated to habitat specialization, whereas in other size-
dimorphic species (both male- and female-biased),
sex differences were more commonly in §°N than
313C, which is more consistent with size-mediated
competitive exclusion or dietary specialization. Man-
cini et al. (2013) found no correlation between indices
of sexual size dimorphism and differences in mean
8!5N or 8!3C values in males and females for 6 tropical
and 5 polar seabird species, yet their review indicated
that 70 % of studies on dimorphic seabird species from
temperate and polar regions showed some degree of
trophic or spatial segregation between sexes, com-
pared to only 20 % of studies on dimorphic species in
the tropics. Therefore, sexual size dimorphism ap-
pears to facilitate trophic or spatial segregation, par-
ticularly in high latitude seabirds (potentially related
to more intense competition for resources during the
shorter breeding season); however, even in those re-
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Table 3 (this and the next page). Studies testing for sex differences in foraging and migration strategies in seabirds since 2011.
Dimorphism index = (mean male mass — mean female mass)/(mean male mass + mean female mass), where positive values in-
dicate sexual size dimorphism (SSD), and negative values indicate reverse sexual size dimorphism (RSD). Diet (trophic level)

Taxon Mean adult Dimorphism Wintering Timing of Foraging
mass (kg) of index location migration location
males (females)®
Charadriiformes
Brown skua Stercorarius antarcticus 1.765 (1.973) [17] -0.056 N Y
1.765 (1.973) EZ: -0.056 N
- — 1.765 (1.973) -0.056 N Y
Audouin's gull Larus audouinii 0.580 (0.492) 181 0.082 Y*
Lesser black-backed gull Larus fuscus 0.941 (0.776} 0.096 Y
Black-legged Kkittiwake Rissa tridactyla 0.400 (0.400) 17! 0.000 Y N
Brunnich's guillemot Uria lomvia 0.990 (1.000) 17! -0.005
Atlantic puffin Fratercula arctica 0.480 (0.510) 1" -0.030 Y
Pelecaniformes
Christmas Island frigatebird Fregata andrewsi 1.400 (1.550) [} -0.051 Y**, Y*
Australasian gannet Morus serrator 2.600 (2.520) 1121 0.016 N
2.510 (2.69 -0.035 Y
2.600 (2.520) 121 0.016
Northern gannet Morus bassanus 2.956 (3.209} -0.041 N Y*
2.930 (3.070) ™ -0.023 N Y
- 2.810 (3.021)1? -0.036 Y
Cape gannet Morus capensis 2.705 (2.715) 131 -0.002
Masked booby Sula dactylatra 2.059 (2.470) -0.091
Imperial shag Phalacrocorax atriceps 2.810 (2.21 0.120 Y
2.285 (1.929) M4 0.084 Y
2.285 (1.92 0.084
2.810 (2.210) 131 0.120
2.285 (1.929) 114 0.084 Y
South Georgia shag Phalacrocorax georgianus 2.600 (2.160) 0.092
Kerguelen shag, Phalacrocorax verrucosus 2.429 (2.133 0.065 N
European shag Phalacrocorax aristotelis 1.928 (1.636) 161 0.082 N
1.940 (1.600) 17! 0.096 Y
1.928 (1.636) 0.082
Procellariiformes
Wandering albatross Diomedea exulans 9.768 (7.686) (6! 0.119
9.768 (7.686) :g} 0.119 Y
9.768 (7.686) o 0.119 Y
9.768 (7.686) o 0.119
9.768 (7.686) i 0.119 Y Y
9.768 (7.686) o 0.119 Y
9.768 (7.686) . 0.119 Y
9.768 (7.686) (6! 0.119 Y
Black-browed albatross Thalassarche 3.650 (2.970) 0.103 Y
melanophris
Southern giant petrel Macronectes giganteus ~ 5.190 (3.940) 7! 0.137 Y Y
Northern giant petrel Macronectes halli 5.000 (3.800) 7] 0.136 Y Y
Barau's petrel Pterodroma baraui 0.380 (0.380{ 0.000 Y*
Scopoli's shearwater Calonectris diomedea 0.676 (0.569) 1l 0.086 Y Y
) ) 0.676 (0.569} 0.086 Y
Cory's shearwater Calonectris borealis 0.880 (0.810) ! 0.041 Y
) 0.880 (0.810) [ 0.041 Y
Streaked shearwater Calonectris leucomelas  0.549 (0.482) [1] 0.065 Y
0.549 (0.482) [t 0.065 Y
Sooty shearwaters Ardenna grisea 0.897 (0.881) 0.009 N Y*
Balearic shearwater Puffinus mauretanicus 0.509 (0.495) 11 0.014 N
Sphenisciformes
King penguin Aptenodytes patagonicus 13.981 (12.782, 0.045
Adélie penguin Pygoscelis adeliae 5.350 (4.740) [ 0.060
Chinstrap penguin Pygoscelis antarctica 4.980 (4.470) 1) 0.054
Gentoo penguin Pygoscelis papua 5.500 (5.060) 1! 0.042
5.500 (5.060) ! 0.042 N
Southern rockhopper penguin Eudyptes c. 3.917 (3.869} 0.006 Y
chrysocome 3.917 (3.869) 2 0.006 N Y
i 3.917 (3.869) ! 0.006 Y
Eastern rockhopper penguin Eudyptes 3.050 (2.980) Il 0.012 Y
chrysocome filholi
Northern rockhopper penguin Eudyptes 2.960 (3.120) 11! -0.026
chrysocome moseleyi 2.960 (3.120) M -0.026 Y
Macaroni penguin Eudyptes chrysolophus 4.650 (4.890) !l -0.025 Y
4.650 (4.890) [ -0.025 Y Y
African penguin Spheniscus demersus 3.452 (2.996) 0.071 Y**
Magellanic penguin Spheniscus magellanicus 3.800 (3.000}4 0.118
4.490 (3.709) ¥ 0.095
4.490 (3.709) “I 0.095 N
Humboldt penguin Spheniscus humboldti 4.100 (3.200} 0.123
Little penguin Eudyptula minor 1.172 (1.048) 1! 0.056 N
1.247 (1.119) B 0.054
“Mean adult body mass was taken from the reference in the final column (if available); otherwise, it was extracted from the
following sources: '/Borboroglu & Boersma (2015), 2'L.udynia et al. (2013), ®lJ.B. Thiebot pers. comm., “/Forero et al. (2001),
BlSalton et al. (2015), ¥ITickell (1968), ['ISchreiber & Burger (2002), BIMiiller et al. (2015), ®'Ramos et al. (2009), 1%Ochi et al.
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based on §*°N, unless indicated otherwise by '~' representing conventional diet analysis. Diet (carbon source) based on §'3C. BR =
breeding season; NB = nonbreeding season; NB* = pre-laying. Asterisks after (Y) indicate that sex specific differences only oc-
curred (*) during certain periods of the reproductive stage, (**) in certain years, (***) in some tissues (blood, bones or feathers)

Timing Diving Flight Diet Diet Breeding No. Reference
of charac- (trophic (carbon stage years
foraging teristics level) source) in study
NB 2 Carneiro et al. (2016)
BR 1 Carneiro et al. (2014)
Y NB 5 Krietsch et al. (2017), this Theme Section
N N BR 1 Garcia-Tarrason et al. (2015)
BR 4 Camphuysen et al. (2015)
NB 1 Bogdanova et al. (2011)
Y Y* BR 1 Elliott & Gaston (2015)
NB 7 Fayet et al. (2016)
BR 2 Hennicke et al. (2015)
N N BR 3 Machovsky-Capuska et al. (2014)
BR 1 Wells et al. (2016)
Y~ BR 3 Machovsky-Capuska et al. (2016)
Y Y NB, BR 3 Stauss et al. (2012)
2 Fifield et al. (2014)
Y Y BR 3l Cleasby et al. (2015)
Y BR 2 Rishworth et al. (2014b)
Y Y BR 1 Sommerfeld et al. (2013)
Y** BR 3 Quillfeldt et al. (2011)
N Y N BR 1 Quintana et al. (2011)
Y* NB, BR 1 Harris et al. (2013)
Y Y NB, BR 3 Michalik et al. (2013)
BR 4 Harris et al. (2014b)
Y BR 3 Ratcliffe et al. (2013)
N N N BR 2 Camprasse et al. (2017a)
NB 3 Grist et al. (2014)
BR 3 Soanes et al. (2014)
Y* NB, BR 3 Lewis et al. (2015)
N Y NB, BR 1 Ceia et al. (2012)
NB 1 Akesson & Weimerskirch (2014)
BR 1 Carravieri et al. (2014)
Y Y NB, BR 1 Jaeger et al. (2014)
Y Y NB, BR 24 Weimerskirch et al. (2014)
NB 15 Weimerskirch et al. (2015)
BR 6 Cornioley et al. (2016)
BR 22 Jiménez et al. (2016)
BR 1 Patrick et al. (2014)
NB, BR 1 Thiers et al. (2014)
NB, BR 1 Thiers et al. (2014)
Y NB*, BR B Pinet et al. (2012)
NB 3 Miiller et al. (2014)
NB 3 Miiller et al. (2015)
NB 6 Pérez et al. (2014)
NB 3 Pérez et al. (2016)
NB*, BR 1 Yamamoto et al. (2011)
NB 5 Yamamoto et al. (2014)
NB, BR 1 Hedd et al. (2014)
BR 4 Meier et al. (2015)
Y Y N BR 1 Le Vaillant et al. (2013)
N N NB* 3 Gorman et al. (2014)
Y N NB* 3 Gorman et al. (2014)
Y N NB* 3 Gorman et al. (2014)
N Y N BR 1 Camprasse et al. (2017b), this Theme Section
Y BR 1 Ludynia et al. (2013)
N N NB 1 Thiebot et al. (2015)
Y Y Y BR 3 Rosciano et al. (2016)
NB 2 Thiebot et al. (2014b)
Y* Y* BR 1 Booth & McQuaid (2013)
NB 2 Thiebot et al. (2014b)
NB 2 Thiebot et al. (2014b)
N N NB Thiebot et al. (2014a)
Y BR 2 Pichegru et al. (2013)
Y BR 1 Rey et al. (2013)
N Y NB 1 Silva et al. (2014)
N N N BR 3 Rosciano et al. (2016)
Y BR 1 Rey et al. (2013)
N N N BR 1 Pelletier et al. (2014)
NY~ Y** BR 9,17 Chiaradia et al. (2016)

(2010), ['YlGenovart et al. (2003), 121G, E. Machovsky-Capuska pers. comm., [!*lRishworth et al. (2014a), [!*/Harris et al. (2013),
[18IQuillfeldt et al. (2011), "*Lewis et al. (2015), '"!Phillips et al. (2002), [**IRuiz et al. (1998)
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gions, this pattern is not ubiquitous (Phillips et al.
2007, Young et al. 2010, Mancini et al. 2013) (Table 3).

Sexes may also segregate by exploiting prey at
different depths, as shown in early studies on cor-
morants or shags Phalacrocorax spp., in which males
made deeper and longer dives than females (Wanless
et al. 1995, Kato et al. 2000). More recently, Quintana
et al. (2011) used GPS and dive recorders simultane-
ously and found that female imperial shags Phalacro-
corax atriceps foraged in shallow coastal waters,
whereas males preferred deeper offshore waters.
The authors suggested that this finding reflected the
preference by each sex for foraging at depths that
maximised their respective foraging efficiencies. In
line with this hypothesis, sex differences in foraging
behaviour and dive depths in northern gannets
Morus bassanus appear to indicate sex-specific habi-
tat segregation, but in this case, males foraged
mostly in mixed, shallow coastal waters and females
in stratified, deeper offshore waters (Lewis et al.
2002, Cleasby et al. 2015).

The sexes may also segregate temporally by under-
taking foraging trips at different times of the day. In
sexually dimorphic cormorants, males preferentially
forage in the afternoon (Wanless et al. 1995, Kato et
al. 2000, Harris et al. 2013). Links between time of
day and foraging patterns are also evident in mono-
morphic species, including the Brunnich's guillemot
Uria lomvia, which exhibits strong sex-specific diur-
nal schedules, with one sex foraging mostly at night
and the other mostly at midday (Jones et al. 2002,
Paredes et al. 2008, Elliott et al. 2010). Diurnal pat-
terns of foraging in this species also resulted in spa-
tial segregation, as males (which mostly forage at
night) made shallower dives than females (in the
late afternoon), presumably because males specialize
on shallow prey normally found at night (Elliott &
Gaston 2015).

As with effects of age, the effects of sex may be
apparent only in some years. Sex differences in for-
aging location and diving behaviour were detected
in one year in the sexually dimorphic Japanese cor-
morant, Phalacrocorax capillatus, but not in the fol-
lowing year when food was abundant, suggesting
that segregation is more likely during intense intra-
specific competition (Ishikawa & Watanuki 2002).
More recently, Quillfeldt et al. (2011) showed in a
multi-year study during chick rearing that larger
male imperial shags dived deeper than females in
some years but not others, though the mechanism
was unclear.

Similarly, sex-specific foraging differences may
vary with environmental conditions within years.

Smaller female European shags, Phalacrocorax aris-
totelis, foraged for longer than males during strong
onshore winds, but not at lower wind speeds (Lewis
et al. 2015). In contrast, there was no evidence that
tide or weather influenced foraging behaviour of
either sex in the Briinnich's guillemot (Elliott & Gas-
ton 2015). In other taxa, sexual segregation appears
to be related more obviously to sex differences in
reproductive roles (see following section).

Interactions between sex and stage of the
annual cycle

Although males and females share their breeding
duties to a similar extent in most seabirds, intersex-
ual competition for food, differences in energetic or
nutritional requirements, or different parental roles
can lead to sexual differences in foraging behaviour
during specific periods. Sex differences in stable iso-
tope ratios are more likely during the pre-laying and
later breeding periods than during the nonbreeding
period (Phillips et al. 2011). Tracking studies also
show that the sexes may segregate by location (Stauss
et al. 2012) or time of day (Harris et al. 2013) during
the breeding but not the nonbreeding season. These
results imply that sex differences in foraging strate-
gies are more likely when males and females have
different reproductive roles and when potential com-
petition and partitioning of resources between sexes
are probably higher (but see Silva et al. 2014).

During the pre-laying period, males and females
frequently differ in their diet or distribution, as indi-
cated, for example, by sexual differences in isotope
ratios (Phillips et al. 2011). Males (which usually per-
form a greater role in nest defence) often forage more
locally and visit the colony more frequently, whereas
females often go on a pre-laying exodus, engaging in
longer foraging trips in more productive waters to
meet energetic or other nutritional requirements for
the clutch (Lewis et al. 2002, Yamamoto et al. 2011,
Hedd et al. 2014, Quillfeldt et al. 2014, Pistorius et al.
2015). Indeed, changing energetic or nutritional
requirements during the breeding cycle would ex-
plain why sex differences are apparent only at cer-
tain stages in monomorphic species such as Barau's
petrel Pterodroma baraui (Pinet et al. 2012) or why
late-incubation trips by male southern rockhopper
penguins are longer, as they do all the early chick-
guarding (Ludynia et al. 2013). In theory, such differ-
ences seem less likely if the male courtship feeds the
female, potentially contributing substantially to
clutch formation as in terns, gulls and skuas (Becker
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& Ludwigs 2004), but this does not seem to be the
case in the brown skua, as a higher proportion of
females than males undertake a pre-laying exodus
(Carneiro et al. 2016). In contrast, in some species
(including gadfly petrels), males perform longer for-
aging trips than females, perhaps to prepare them-
selves for the typically-long fasting bout post-laying
(Pinet et al. 2011, Rayner et al. 2012), and in the
black-legged kittiwake, males are more likely than
females to perform a pre-laying excursion, although
the reason for this is unclear (Bogdanova et al. 2011).

Sexual differences in foraging patterns may extend
into the incubation period, possibly due to the re-
quirement for females to replenish the energy, essen-
tial nutrients or minerals spent in clutch formation.
Hence, females may perform particularly long or dis-
tant foraging trips after laying (Lewis et al. 2002,
Phillips et al. 2004). The emperor penguin Apteno-
dytes forsteri is an extreme example; the male incu-
bates the egg until hatching (60-70 d), while the
female forages to recover from egg formation and to
gather food to feed the chick just after hatching
(Williams 1995). After hatching in some penguins
and alcids, males brood the chick while the females
forage to provide meals for the offspring (Clarke et
al. 1998, Tremblay & Cherel 2003, Paredes et al. 2006,
Green et al. 2009); the reverse occurs in some terns
(Becker & Ludwigs 2004).

During chick-rearing, some species show sexual
differences in chick provisioning rates. Usually,
these differences involve more frequent visits or
larger meals from the male (Catry et al. 2005, Thax-
ter et al. 2009, Welcker et al. 2009), perhaps reflect-
ing deferred costs of egg production in females or
sex-specific allocation of foraging effort between
parents and offspring (Monaghan et al. 1998, Thax-
ter et al. 2009). In Cape gannets Morus capensis,
females undertake a greater proportion of long trips
than males (Pistorius et al. 2015). In the Manx
shearwater Puffinus puffinus, only females adopt
the dual foraging strategy, whereas males perform
short foraging trips and provision chicks at a higher
rate (Gray & Hamer 2001). In several alcids, the role
of males in provisioning chicks increases during
later rearing or in the post-fledging period, when
males forage closer to the colony, dive longer and
deeper per day and are forced to forage at lower-
quality prey patches than females (Harding et al.
2004, Thaxter et al. 2009, Elliott et al. 2010, Burke et
al. 2015). Although sex differences usually decrease
or disappear after the breeding period, with males
and females showing similar distribution and forag-
ing behaviour, in some species, sexual segregation

in trophic niches persists year-round (Phillips et al.
2005, 2011). Males and females can differ in moult-
ing strategies (Hunter 1984, Weimerskirch 1991),
which in theory might result in different dietary
needs or foraging behaviour, but this has not been
investigated so far.

Interactions between sex and other factors

Sex-specific patterns of migration and foraging
may involve interactions with various other intrinsic
factors. For example, trip duration in the common
guillemot Uria aalge during incubation was longer
in low-quality females, i.e. those with consistently
lower long-term breeding success (Lewis et al. 2006).
There can also be interactions with age; older female
king penguins Aptenodytes patagonicus conducted
shorter trips, dived deeper and performed more prey
pursuits during the chick rearing phase and also had
higher blood §'°N than younger females (Le Vaillant
et al. 2013). As adults, male but not female wander-
ing albatrosses forage progressively farther south
with increasing age (Lecomte et al. 2010, Jaeger et
al. 2014).

Implications for population dynamics and
conservation

If sexual segregation in foraging or migration
behaviour has fitness consequences and if such
behaviour is heritable, there may be important
evolutionary consequences (Grémillet & Char-
mantier 2010). However, as far as we are aware,
no seabird study has determined the heritability of
sex-specific foraging and migration strategies. Sex-
ual segregation can have important implications
for population dynamics and conservation if there
are fitness costs associated with foraging location.
One principal mechanism is that segregation leads
to differing foraging efficiencies, with demographic
consequences (Jaeger et al. 2014). Sex-specific
variation in demographic rates could also arise from
differential association with anthropogenic factors
that have impacts on survival rates. Sexual segre-
gation of wandering and other albatrosses affects
the relative vulnerability of males and females to
bycatch by pelagic longline fleets (Bugoni et al.
2011, Jiménez et al. 2014, Gianuca et al. 2017).
Sexual segregation can also affect the relative risk
of exposure to organic contaminants (Carravieri et
al. 2014).
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INDIVIDUAL SPECIALIZATION

Patterns of individual specialization:
incidence and types

Individual specialization is generally regarded as
the variation among individuals, in terms of distribu-
tion, behaviour, diet or other aspects of resource
acquisition, that remains after accounting for the
group effects outlined above (Bolnick et al. 2003, Dall
et al. 2012). Specialization is often used to describe
consistency in some aspect of the behaviour of an
individual, but there is no consensus as to the mini-
mum period over which that has to be maintained or
the extent to which it may just reflect stability in the
environment. The advantages and disadvantages of
different approaches commonly used to detect and
quantify individual specialization using conventional
diet, stable isotope or tracking data are reviewed by
Carneiro et al. (2017). To illustrate the diversity of
research and to explore taxonomic, biogeographic
and other patterns, we carried out a non-exhaustive
review of studies that tested for individual specializa-
tion (Table 4). This expands on a previous review by
Ceia & Ramos (2015) and includes studies examining
fidelity to foraging sites, staging areas or routes
during the breeding or nonbreeding seasons, and
consistency in breeding-season trip characteristics,
migration schedules, diving patterns and other aspects
of at-sea activity, habitat use, diet or trophic level in
the short or long term (Table 4).

Prior to the last decade, statistical analyses of char-
acteristics that might reflect individual specialization
were rare, although a number of studies documented
consistent spatial segregation among individuals that
were tracked for a sufficient length of time during the
breeding (Irons 1998, Hedd et al. 2001) or nonbreed-
ing seasons (Croxall et al. 2005). For example, in a
study on grey-headed albatrosses, all were success-
ful breeders from the same subcolony but showed
diverse movement strategies during the 16 mo non-
breeding period, from largely resident in the south-
west Atlantic Ocean to repeated use of the southwest
Indian Ocean or more distant regions in successive
winters (Croxall et al. 2005). As devices have become
smaller and cheaper, many more seabird studies
have shown that individuals repeatedly use the same
foraging areas (i.e. show high site fidelity) in succes-
sive trips during the breeding season or in multiple
nonbreeding seasons, or show consistency in depar-
ture bearing or other trip characteristics (Table 4).
High nonbreeding site fidelity at a fine scale has also
been determined using colour-ring resightings (Grist

et al. 2014). Few studies have examined site fidelity
among rather than within breeding seasons (but see
Wakefield et al. 2015, Patrick & Weimerskirch 2017).
During the nonbreeding season, individuals of most
species tracked to date (15 of 20; see Table 4) showed
a very high degree of foraging site fidelity at the
regional level, with the notable exceptions of a small
proportion of Cory's shearwaters, sooty shearwaters
Ardenna grisea, long-tailed skuas Stercorarius longi-
caudus and 2 species of guillemots (Dias et al. 2011,
Hedd et al. 2012, McFarlane Tranquilla et al. 2014,
van Bemmelen et al. 2017, this Theme Section).

Site fidelity is usually considered to arise in sea-
birds either through a ‘win-stay, lose-shift' strategy
that is optimal if there is high spatio-temporal corre-
lation in resource availability or through the benefit
of site familiarity (Irons 1998, Wakefield et al. 2015).
The incidence of site fidelity appears to be lower
in the breeding than in the nonbreeding season
(Table 4), but this is at least partly an issue of spatial
scale and accuracy of different tracking devices: GPS
loggers or satellite-transmitters for breeding birds
and geolocators for nonbreeding birds. In around
half of the species tracked in multiple years, site
fidelity of nonbreeding birds was much lower at the
mesoscale than the regional level, and there was
often little or no consistency in the use of staging
areas and migration routes (Table 4). Black-browed
albatrosses from South Georgia were consistent in
the centroid of their terminal wintering area, but
not in the use of staging sites (Phillips et al. 2005);
Scopoli's shearwaters showed significant repeatabil-
ity in wintering region and some (but not all) aspects
of migration schedule but not in the most westerly
longitude reached during the return journey (Miller
et al. 2014); long-tailed skuas were generally faith-
ful to staging and wintering area and to migration
routes, but as the winter progressed, a small but in-
creasing number of individuals began to deviate
from their route in previous years (van Bemmelen et
al. 2017). Migration schedules (i.e. timing of depar-
ture and return to the colony and timing of major
movements during the winter) were usually consis-
tent within individuals across years, having excluded
the influence of changes in breeding success or
status (see Table 4). Migration timing can be affected
by extrinsic factors; relative consistency in date of
arrival at the colony among individual Desertas
petrels Pterodroma deserta was attributed to poten-
tial delays because unfavourable winds increased
return time from more distant regions or because
birds waited for a bright moonlight night before
departing (Ramirez et al. 2016).
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All studies that tested for individual consistency in
foraging behaviour have found evidence for this in
terms of diving depth, diving or flight bout duration,
proportion of daylight and darkness spent in flight,
landing rate, etc. (Table 4). However, this may reflect
a positive publication bias. The degree of individual
variability can also change seasonally; in the impe-
rial shag, there is an effect of photoperiod (and
hence daylight available for foraging) and degree of
constraint associated with breeding or moulting, on
the relative consistency in the time that foraging
begins and ends each day (Harris et al. 2013,
2014Db). Results from conventional stomach contents
or stable isotope ratios indicate significant consis-
tency within individuals in many species in habitat
use, prey type or trophic level in the short or long
term (days to weeks, between the breeding and
nonbreeding seasons or annual); however, there
were exceptions, particularly among the albatrosses
and petrels (Table 4).

Drivers of individual specialization:
influence of species and sex

Individual specialization in some form has been
recorded in all orders of seabirds (Sphenisciformes,
Procellariiformes, Pelecaniformes and Charadriiformes)
but only half of the families (Spheniscidae, Dio-
medeidae, Procellariidae, Sulidae, Phlacrocoracidae,
Stercorariidae and Laridae, but not Pelecanoididae,
Hydrobatidae, Fregatidae, Phaethontidae, Sternidae
and Rhynchopidae) (Table 4). This likely reflects a
research bias, with fewer studies on tropical seabirds
and less tracking of smaller species because of the
greater impacts of devices on these birds. The corre-
spondence between the presence or absence of indi-
vidual specialization and phylogeny or region is
therefore unclear; nevertheless, all 10 studies to date
that tested for individual specialization in diverse
aspects of movement and foraging behaviour of cor-
morants and shags have found evidence for its exis-
tence, suggesting that it is the dominant pattern in
those taxa (Table 4).

Several studies have compared the degree of site
fidelity or behavioural consistency between males
and females, but results do not show a clear pattern.
Long-term consistency in habitat use was greater in
male than in female wandering albatrosses, possibly
because females shift distribution to the north to
reduce competition with males in the nonbreeding
period (Ceia et al. 2012). Female imperial shags were
less variable in the timing of foraging and other trip

characteristics, attributed to the lower costs of forag-
ing in males and hence their greater discretionary
time for accommodating the female, which typically
takes the first foraging shift each day (Harris et al.
2013, 2014Db). In Kerguelen shags Phalacrocorax ver-
rucosus, males were less specialized in diving behav-
iour than females (Camprasse et al. 2017a). Similarly,
males showed more variability in dive depths in
South Georgia shags Phalacrocorax georgianus, pos-
sibly because maximum dive depth is more closely
correlated with body mass in females (Ratcliffe et al.
2013). Female Audouin's gulls Larus audouinii for-
aged at sea throughout the week, whereas males
switched from foraging at sea during weekdays to
inland coastal habitats (rice fields) on weekends,
when fisheries discards were unavailable (Garcia-
Tarrason et al. 2015). In other studies, there were no
differences in behavioural consistency or wintering
site fidelity between sexes (Grist et al. 2014, Potier et
al. 2015), or there were sex differences in consis-
tency, but the direction depended on the parameter
(Miller et al. 2014).

Extrinsic explanations for individual specialization:
influence of prey predictability

Individual specialization appears to be widespread
in cormorants and shags (Table 4). This seems likely
to be related to their exploitation of benthic prey,
which may be constrained in terms of seabed habi-
tat. Such habitats contain numerous static features,
enabling foraging birds to memorize topographic
cues to improve encounter rate. Differing degrees of
spatial and temporal predictability of resources
might also explain relative fidelity to foraging sites
in more pelagic seabirds, as particular areas (shelf,
shelf breaks, fronts, etc.) reliably hold more prey
resources, and individuals return there in successive
trips. Indeed, this was the suggested explanation for
consistent differences in trip bearings and repeata-
bility in travel distances of individual northern gan-
nets only at the Bass Rock and not Great Saltee, UK,
on the basis that predictability of resources was
higher in the North Sea than in the Irish Sea (Hamer
et al. 2001). However, specialization does not always
relate to resource predictability; black-browed alba-
tross, shy albatross Thalassarche cauta and razorbill
Alca torda were not consistent in site or habitat use
although they all fed in neritic waters (Hedd et al.
2001, Granadeiro et al. 2014, Shoji et al. 2016). In
addition, although it is intuitive that specialization
would be less likely in tropical waters, given the
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Table 4 (this and the next 3 pages). Evidence for significant individual specialization in distribution, movements, activity or

diet of seabirds. V: significant effect; (V): some evidence but with exceptions; X: study tested explicitly for specialization but

found no evidence; W: within breeding season; B: between breeding seasons; N: nonbreeding site; R/S: route or staging area;
Dep: at departure; Dur: during; Ret: at return; ST: short-term (days to weeks); LT: between seasons or annual

Species Breeding colony Foraging site Foraging trip Fidelity to
fidelity within or bearing or dis- nonbreeding site,
between breeding tance (breeding route or staging
seasons season) area®
King penguin Falklands W-X \
Aptenodytes patagonicus
Macaroni penguin South Georgia
Eudyptes chrysolophus
Southern rockhopper penguin Falklands
Eudyptes c. chrysocome
Adélie penguin Syowa Station, W - (\/)
Pygoscelis adeliae Antarctica
Little penguin Penguin Island,
Eudyptula minor Australia
Yellow-eyed penguin Oamaru, W -+
Megadyptes antipodes New Zealand
Black-browed albatross South Georgia N -+ ,R/S-X
Thalassarche melanophris
Falklands
Kerguelen W-(@{),B-() y
Grey-headed albatross South Georgia N -+
Thalassarche chrysostoma
Shy albatross Tasmania W-X,B-X N
Thalassarche cauta
Light-mantled albatross South Georgia
Phoebetria palpebrata
Wandering albatross South Georgia
Diomedea exulans
Crozet N -+
White-chinned petrel South Georgia
Procellaria aequinoctialis
Yelkouan shearwater Malta N-+
Puffinus yelkouan
Short-tailed shearwater Tasmania N -+
Ardenna tenuirostris
Sooty shearwater Kidney Island N- @), R/S - (V)
Ardenna grisea (Falklands)
Streaked shearwater Sangan, Mikura, N -+ , R/S - v
Calonectris leucomelas Awa Islands, Japan
Cory's shearwater Selvagem Grande N - (\/), R/S -X
Calonectris borealis (Madeira)
Berlenga (Portugal)
Canary Islands W -+
Scopoli's shearwater Sicily (Italy) N-v,R/S-X
Calonectris diomedea
Desertas petrel Madeira N -+
Pterodroma deserta
Thin-billed prion New Island,
Pachyptila belcheri Falklands
Broad-billed prion Rangatira,
Pachyptila vittata Chatham Islands
Northern gannet Bass Rock (UK) W-+v,B-V N
Morus bassanus
Great Saltee (UK) W-X X
Grassholm (UK) w -+ \/
and Brittany (France)
Alderney W-X \
Various colonies, Canada N -+
North Norway W-X )
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Consistent Consistent Consistent Consistent Reference
migration activity or habitat use® diet or trophic
schedule® diving in short- level? in short-
pattern or long-term or long-term
Baylis et al. (2015)
\ LT-V Green et al. (2005),
Horswill et al. (2016)
LT -+ LT -+ Dehnhard et al. (2016)
Watanuki et al. (2003)
\ Ropert-Coudert et al.
(2003)
Mattern et al. (2007)
Dur - V, Ret - \ Phillips et al. (2005),
Mackley et al. (2010)
ST -X ST -X Granadeiro et al. (2014)
ST -+ Patrick & Weimerskirch
(2014b, 2017)
V Croxall et al. (2005),
Mackley et al. (2010)
Hedd et al. (2001)
\/ Mackley et al. (2010)
\ ST-V,LT -+ ST-V,LT-X Mackley et al. (2010),
Ceia et al. (2012)
Weimerskirch et al. (2015)
\ Mackley et al. (2011)

Dep-\/, Dur-\/, Ret -V

Dep - (\), Dur - (\)
Dep - v, Dur - V

Dep-\/, Dur-\/, Ret -V

ST - () ST - ()
Dep - X, Dur-\/, Ret - X
Dep -V, Ret - V LT -V LT -V
ST -+,LT-X ST -+,LT-X
LT -X LT -X
N ST-+, LT -+ ST -+, LT-+
N ST -V ST -V

Dur-\/, Ret -V

Raine et al. (2013)
Yamamoto et al. (2015)
Hedd et al. (2012)
Yamamoto et al. (2014)

Dias et al. (2011),
Dias et al. (2013)

Ceia et al. (2014)

Navarro & Gonzalez-Solis
(2009)

Miiller et al. (2014)

Ramirez et al. (2016)
Quillfeldt et al. (2008)
Grecian et al. (2016)

Hamer et al. (2001, 2007),

Wakefield et al. (2015)
Hamer et al. (2001)
Votier et al. (2010),

Patrick et al. (2014)
Soanes et al. (2013)
Fifield et al. (2014)
Pettex et al. (2012)

(table continued on next 2 pages)
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(Table 4 continued)

Species

Breeding colony

Foraging site
fidelity within or
between breeding

Foraging trip
bearing or dis-
tance (breeding

Fidelity to
nonbreeding site,
route or staging

dIncludes conventional diet and stable isotope studies

seasons season) area®
Great cormorant Chausey Islands, W-+V,B-+
Phalacrocorax carbo France
European shag Isle of May (UK)
Phalacrocorax aristotelis
Imperial shag Argentina W -+ \
Phalacrocorax atriceps
South Georgia shag South Georgia
Phalacrororax georgianus
Kerguelen shag Kerguelen W -+ \
Phalacrocorax verrucosus
Crozet shags Possession Island,
Phalacrocorax melanogenis Crozet
King cormorant Macquarie Island
Phalacrocorax purpurascens
Pelagic cormorant Gulf of Alaska w-+
Phalacrocorax pelagicus
Double-crested Cormorant Oneida Lake, W -+
Phalacrocorax auritus New York, USA
Japanese cormorants Teuri Island, Japan w -+
Phalacrocorax capillatus
Razorbill Alca torda Skomer (UK) W-X X
Atlantic puffin Skomer N-v,R/S -V
Fratercula arctica
Great skua Bjerneya N-+
Stercorarius skua Shetland, UK W -+
Brown skua South Georgia
Stercorarius lonnbergi South Shetland Islands N -+
South polar skua King George Island N -+
Stercorarius maccormicki
Long-tailed skua Sweden, Svalbard, N-{),R/S-()
Stercorarius longicaudus and Greenland
Lesser black-backed gull North Norway N-+
Larus fuscus
Yellow-legged gull Gulf of Cadiz, Spain
Larus michahellis
Dolphin gull Falkland Islands W -+
Leucophaeus scoresbii
Black-legged Kittiwake Prince William Sound, W -+
Rissa tridactyla Alaska
Pribilof Islands N-({),R/S- ()
Pigeon guillemot Prince William Sound, Alaska
Cepphus columba
Brunnich's guillemot Various colonies, Canada N - (\/)
Uria lomvia
Nunavut, Canada
Common guillemot Various colonies, Canada N - (\/)
Uria aalge Newfoundland, Canada W -+ N

aStudies only included if 2 or more individuals tracked in multiple years. "Where possible, studies were excluded that did not
control for differences in breeding success between years. “Includes results from tracking and stable isotope studies.

greater variability and patchiness of resources
(Weimerskirch 2007), streaked shearwaters Calo-
nectris leucomelas, which migrate to tropical waters,
showed a high degree of fidelity to nonbreeding
destination and migration route (Yamamoto et al.

2014). Availability and predictability can also vary
over time in the same habitats, which might partly
explain why the degree of consistency in diet or iso-
topic niche in the same species can depend on
breeding stage and year (Ceia et al. 2014).
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Consistent Consistent Consistent
migration activity or habitat use®
schedule® diving in short-

pattern or long-term

Consistent Reference
diet or trophic
level? in short-
or long-term

\/

LT -+

e

Dur -V

LT -V
Dep-\/,Ret-\/ N

Dep - X, Ret - X \

Dep - (\), Ret - ¥ \

ST -+, LT -+

Grémillet et al. (1999),
Potier et al. (2015)
Daunt et al. (2014)

Harris et al. (2013, 2014b)

LT -V Bearhop et al. (2006),
Ratcliffe et al. (2013)
ST-V,LT-+ Bearhop et al. (2006),
Camprasse et al. (2017a)
Cook et al. (2006)

Kato et al. (2000)

Kotzerka et al. (2011)
Coleman et al. (2005)
Ishikawa & Watanuki (2002)

Shoji et al. (2016)
Guilford et al. (2011),
Fayet et al. (2016)
Magnusdottir et al. (2012)
ST-V,LT -+ Votier et al. (2004)
LT -+ Phillips et al. (2007)
Krietsch et al. (2017), this
Theme Section
Kopp et al. (2011)

van Bemmelen et al. (2017),
this Theme Section
Helberg et al. (2009)

Navarro et al. (2017),
this Theme Section
ST -+ Masello et al. (2013)

Irons (1998)

Orben et al. (2015b)
LT -V Golet et al. (2000)

McFarlane
Tranquilla et al. (2014)
ST -V, LT -+ Woo et al. (2008),
Elliott et al. (2009)
McFarlane
Tranquilla et al. (2014)
Regular et al. (2013)

Development of individual specialization:
the role of learning

Individual specialization is expected to offer a selec-
tive advantage where resources are to some extent

predictable; under these circumstances, birds can in-
crease foraging efficiency by reducing search times or
develop proficiency in locating or handling particular
types of prey. Specialization, particularly site fidelity,
likely develops largely from experience gained
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(learned) when seabirds are immature. During these
formative years, individuals show high variability in
dispersal and movement patterns (Thiers et al. 2014, de
Grissac et al. 2016), in which the roles of genetics and
experience are not well understood. Whether individ-
ual wandering albatrosses are partial or full migrants
does not appear to be heritable (Weimerskirch et al.
2015). However, because fledgling seabirds migrate
for the first time without parents, initial dispersal direc-
tion—and potentially the distance travelled—may be
heritable as in other birds (Piersma et al. 2005).

Although intrinsic factors will also play a role, in
the absence of a central-place foraging constraint,
the subsequent timing of movements and areas vis-
ited by immatures is probably dictated to a consider-
able extent by local conditions (including weather)
and the availability, patchiness and predictability of
prey (Mueller & Fagan 2008). Individual migration
pattern probably becomes fixed according to experi-
ence (Guilford et al. 2011, Péron & Grémillet 2013, de
Grissac et al. 2016). There is no effect of age per seon
the nonbreeding strategy in the wandering albatross
(Weimerskirch et al. 2015) nor on the likelihood of an
adult shifting its winter destination in the Cory's
shearwater (Dias et al. 2011). Indeed, Cory's shear-
waters may switch back and forth between different
regions (Dias et al. 2013), and long-tailed skuas may
switch between different routes in successive migra-
tions (van Bemmelen et al. 2017), indicating that these
changes are not the result of accidental displacement
by severe weather conditions. Hence, knowledge of
the previous experience of the individual is key to
understanding the navigation process, and the devel-
opment of individual specialization in movements in
general.

Learning may also be responsible for development
of individual specializations in diving behaviour, par-
ticularly as benthic feeders such as shags and cor-
morants would benefit from local knowledge of bottom
topography and currents (Table 4). Learning could
also explain consistency in at-sea activity patterns (in-
cluding in flights and landings), trophic level or diet,
even in pelagic species, as individuals may specialize
in locating or handling particular types of prey (Table 4).
Indeed, learning seems the likeliest explanation for
dietary specializations in highly opportunistic species
with diverse diets, such as great skua Stercorarius skua,
brown skua and dolphin gull Leucophaeus scoresbii,
which presumably need to develop particular skills to
successfully pursue different foraging modes, whether
that is kleptoparasitism, predation of selected species
or scavenging, etc. (Votier et al. 2004, Phillips et al.
2007, Masello et al. 2013).

Implications of individual specialization
Links to physiology and life-history

Many studies have related differences between
individuals in distribution, timing, foraging success,
etc. to body condition, past experience or future
breeding performance (Bogdanova et al. 2011, Orben
et al. 2015a). By comparison, only a few studies have
examined the physiological correlates of specializa-
tion or the energetic or life-history consequences.
Specialization should in theory be advantageous if an
individual has fixed on a particular strategy that is
more profitable than the alternatives. Positive evi-
dence for an advantage of specialization is particu-
larly apparent among predatory seabirds. Specialist
western gulls Larus occidentalis that maintained
feeding territories within colonies of other seabirds
had higher reproductive success and similar or higher
survival rates compared to non-specialists (Spear
1993). Pairs of slaty-backed gulls Larus schistisagus
that delivered more depredated seabird chicks raised
more fledglings, and their chicks grew faster than
those of pairs that mainly delivered fish, possibly
because of the differences in energy value of the
meals (Watanuki 1992). Individual specialization has
also been linked to potential fitness advantages in
other seabirds. There were significant relationships
between repeatability in some dive characteristics of
great cormorants Phalacrocorax carbo and foraging
efficiency (Potier et al. 2015). In the black-browed
albatross, foraging trip characteristics were less vari-
able in successful than unsuccessful male breeders
and in females that were more faithful to foraging
sites but not necessarily to habitat (water depth) had
higher reproductive success (Patrick & Weimerskirch
2014a, 2017). Pairs of pigeon guillemots Cepphus
columba that were dietary specialists fledged more
chicks than the diet generalists, apparently because
they delivered larger individual prey items (Golet et
al. 2000).

Individual specialization has been linked to carry-
over effects in a number of studies. Individual Euro-
pean shags showed consistent differences in daily
foraging times during winter, and the shorter foraging
times were associated with earlier and more success-
ful breeding, demonstrating a clear carry-over effect
(Daunt et al. 2014). In this context, it is important to
note that carry-over effects may be evident in only a
proportion of colonies (Bogdanova et al. 2017); itis also
often hard to exclude the possibility that a cross-sea-
sonal correlation is unrelated to specialization and in-
stead due to stable within-individual performance, i.e.
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consistently good or poor performance or decision-
making year-round (Harrison et al. 2011). The mecha-
nisms underlying carry-over effects are not always
clear, but it seems that stress (reflected in feather corti-
costerone levels) affects energy or nutrient acquisition
and hence physiological condition, which has impacts
on behaviour and performance in the subsequent
season (Young et al. 2017, this Theme Section).

Intuitively, consequences of individual specializa-
tions might be most obvious when examining effects
of migration distance, as those individuals that travel
the furthest incur greater energy or time costs, reduc-
ing the time available for feeding and resting en
route or delaying the return to the colony. Late return
has repercussions for nest defence, mating opportu-
nities or re-establishment of the pair bonds and, ulti-
mately, timing of laying, which is typically closely
correlated with breeding performance. Yet, 2 studies
did not find evidence of a substantial energetic advan-
tage for individuals that remained closer to the colony,
having accounted for flight time to and within alter-
native wintering areas and for thermoregulatory
costs associated with resting on the water (Garthe et
al. 2012, Fort et al. 2013). Similarly, Ramirez et al.
(2016) did not detect differences in the level of in-
dividual repeatability in at-sea activity patterns of
Desertas petrels that migrated to different wintering
areas. In theory, the choice of a short- or long-distance
migration strategy may be neutral, reflect individual
optima or vary in terms of advantages or disadvan-
tages for survival or reproduction depending on the
year. If so, individual specialization in the form of
high nonbreeding-site fidelity may not affect subse-
quent body condition, survival or fitness unless there
is a major deterioration in the environment.

Various studies have not detected any convinc-
ing selective advantage of individual specialization.
Northern gannets that associated consistently with

fishing vessels were not in better body condition than
those which avoided vessels (Patrick et al. 2015);
short- and long-term consistency in trophic level or
carbon source was not related to body mass index in
wandering albatrosses (Ceia et al. 2012); there were
no effects of foraging area or site fidelity on chick
feeding frequency or meal mass in Adélie penguins
Pygoscelis adeliae (Watanuki et al. 2003) nor on
breeding success in European shags (Daunt et al.
2014); although Briinnich's guillemots that were gen-
eralists tended to deliver slightly more energy per
day, specialists and generalists did not differ in any
other aspect of fitness (Woo et al. 2008); great skuas
that were bird specialists consistently laid earlier, had
larger clutch volumes and improved chick condition
but did not have higher breeding success or survival
than specialist fish predators (Votier et al. 2004);
lastly, consistency within or among years in trip or
dive characteristics did not influence body condition
in northern gannets (Wakefield et al. 2015). The lack
of a clear fitness benefit in many cases may be related
to changes over time in the predictability of resources,
which could fluctuate within and between breeding
seasons. Specialists may be at an advantage when
predictability is high in certain areas, whereas gener-
alists likely benefit when resource availability is less
predictable and more heterogeneous.

Links to population dynamics and conservation

An understanding of variation both among and
within individuals allows the characterization of
populations and has implications for their resilience
in the face of environmental change (Nussey et al.
2007). Unless there is time for selection to act, popu-
lations that lack variability and individuals that lack
plasticity in movements and foraging behaviour are
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Fig. 1. Use of different resources or habitats (represented by different shading) for more or less generalist or specialist
populations
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likely to be at a considerable disadvantage. This is
illustrated by the schematic based on Bolnick et al.
(2003), which illustrates different hypothetical situa-
tions of resource (or habitat) use in Fig. 1: (1) gener-
alist individuals from a generalist population all
target multiple alternative resources (type A); (2)
specialist individuals from a generalist population
consistently target one of multiple alternative re-
sources (type B); and (3) specialist individuals from a
specialist population all consistently target the same
resource. The implications are that in the absence of
a change in behaviour, the loss or deterioration of
one resource or habitat would be catastrophic for the
specialist population (and for the specialists in the
generalist population that targeted that resource) but
of less consequence for the generalists, depending on
density-dependent competition for the resources that
remain. This can have implications in the design of
marine protected areas, since population-based ap-
proaches may not identify important areas used by a
relatively low proportion of specialized individuals,
or these areas may not be prioritized for manage-
ment. However, those areas, and the specialists that
use them, may buffer population-level impacts of a
deterioration in habitats used by the majority of birds.
The same principle applies to a localized increase in
pollutants, competition with fisheries or fisheries
bycatch, etc. Indeed, many threats show extensive
spatial heterogeneity, such as fisheries bycatch risk
(Phillips et al. 2009a, Thiers et al. 2014) and exposure
to pollutants, including plastics, mercury, persistent
organic pollutants and hydrocarbons (Young et al.
2009, Montevecchi et al. 2012, Leat et al. 2013, Tartu
et al. 2013).

The importance of assessing the extent and dura-
tion of specialization can be illustrated by consider-
ing exposure to fisheries. In the Falklands, there
were significant differences between 2 study colo-
nies of black-browed albatrosses in the degree of
bird association with vessels, despite equal distances
to fishing areas (Granadeiro et al. 2011, 2014). Those
studies showed that a minority of individuals repeat-
edly followed vessels, suggesting they specialized in
the short-term on fisheries waste, but tracking in a
subsequent year and stable isotope analyses sug-
gested that any fisheries specialism did not persist. In
contrast, individual northern gannets did show spe-
cialization in following vessels or feeding on fisheries
waste (Patrick et al. 2015). Hence, in the absence of
any mitigation, fisheries bycatch represents a con-
stant risk to black-browed albatrosses that would be
maintained indefinitely if a proportion of the general-
ist population is attracted to vessels at random, but a

particular risk for a specific group of specialist north-
ern gannets that might be removed and not replaced.
The demographic implications of these and other
threats depends on the diversity of strategies (from
specialist to generalist) in the population, the proba-
bility of individuals encountering adverse conditions,
the degree of individual plasticity and the hetero-
geneity in vital rates associated with among-individual
specialization. Seabirds are clearly highly adaptable
in response to environmental pertubation, and some
specializations can be relatively short-lived (Wake-
field et al. 2015). Movement of individuals during the
breeding and nonbreeding seasons are clearly flexi-
ble, but other aspects of behaviour (such as depar-
ture bearings of fledglings) or timing of some events
may be innate, possibly responding to magnetic cues
or stimuli that are highly predictable, such as photo-
period; however, even then, there may be some
capacity for fine-tuning in response to environmental
factors (Helm et al. 2013).

CONCLUSIONS

As this review has shown, many intrinsic factors (in-
cluding stage of the annual cycle, breeding status,
age and sex) drive individual differences in movement
patterns and behaviour of seabirds. Understanding
the nature, drivers and consequences of this variation
is revealing in terms of ecology and life-histories and
determines the response of individuals, populations
and species to environmental changes, including an-
thropogenic threats. In addition, the effects of intrinsic
factors and their interactions with each other and with
the environment need to be considered in sampling
design and analyses, and before drawing conclusions
about underlying processes and mechanisms. They
also need to be taken into account when evaluating
evidence for individual specialization and its causes
and consequences. Effects of factors such as sex, stage,
age, as well as individual specializations are common
in terms of distribution, habitat use, diving, diet and
other components of foraging strategies at sea, but
their roles and extents are highly variable. Site fidelity
is scale-dependent for migrants, greater at the re-
gional level than in the use of staging areas and
routes, and can be low during the breeding season
(Table 4). Timing of movements during the nonbreed-
ing period is often consistent, but with some flexibility
in response to local conditions. As might be expected,
seabirds retain the flexibility to respond to local envi-
ronmental conditions or cues and intrinsic factors
(body condition, physiological constraints, etc.).
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There is much scope for more studies on the time-
scale or periods in which effects of sex, age and spe-
cialization are apparent (from days to years) and the
drivers underpinning these factors (resource avail-
ability and predictability, density-dependent compe-
tition, intrinsic characteristics, learning). Adults clearly
use memory (Regular et al. 2013) to guide subse-
quent decisions; under what conditions (i.e. changes
in resource availability or habitat suitability) they
might re-enter an exploratory phase as adults and
refine their movement and foraging strategies is
unknown. Although the papers in this Theme Section
have increased our understanding of the implications
of individual variation and specialization, there are
still many gaps in our knowledge. With regard to
individual specialization in particular, we would rec-
ommend research on the circumstances in which it
offers a selective advantage, the degree of genetic or
cultural transmission, the level of plasticity in re-
sponse to the environment, the energetic and other
physiological consequences and effects (immediate
or carry-over) on survival and reproduction. This is
particularly important in a rapidly changing world, as
the degree of plasticity of individuals affects the
capacity of populations to respond to changes in
conditions.
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ABSTRACT: There is increasing realisation that individuals in many animal populations differ
substantially in resource, space or habitat use. Differences that cannot be attributed to any a priori
way of classifying individuals (i.e. age, sex and other group effects) are often termed ‘individual
specialisation’. The aim of this paper is to assess the most common approaches for detecting and
quantifying individual specialisation and consistencies in foraging behaviour, movement patterns
and diet of marine predators using 3 types of data: conventional diet data, stable isotope ratios and
tracking data. Methods using conventional diet data rely on a comparison between the propor-
tions of each dietary source in the total diet and in the diet of individuals, or analyses of the statis-
tical distribution of a prey metric (e.g. size); the latter often involves comparing ratios of individual
and population variance. Approaches frequently used to analyse stable isotope or tracking data
reduced to 1 dimension (trip characteristics, e.g. maximum trip distance or latitude/longitude at
certain landmarks) include correlation tests and repeatability analysis. Finally, various spatial
analyses are applied to other types of tracking data (e.g. distances between centroids of distribu-
tions or migratory routes, or overlap between distributions), and methods exist to compare habitat
use. We discuss the advantages and disadvantages of these approaches, issues arising from other
effects unrelated to individual specialisation per se (in particular those related to temporal scale)
and potential solutions.

KEY WORDS: Behavioural consistency - Foraging site fidelity - Foraging specialisation -
Marine mammals - Niche variation - Repeatability - Seabirds - Site fidelity

INTRODUCTION

Ecologists have often treated conspecific individu-
als as broadly equivalent, after accounting for age,
sex and other group effects (Bolnick et al. 2003,
Yamamoto et al. 2014, Wakefield et al. 2015). How-
ever, there is increasing realisation that individuals in
many animal populations differ substantially in re-

*Corresponding author: ana.bertoldi.carneiro@gmail.com
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source use (‘niche variation'), and the term ‘individual
specialisation’ has been used to describe hetero-
geneity in resource use (Aratjo et al. 2011, Patrick et
al. 2014, Ceia & Ramos 2015). The extent of niche
variation has important implications, including the
potential not only to reduce the degree of intra-spe-
cific competition, but also to increase individual effi-
ciency in finding and handling food (Estes et al. 2003,
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Cook et al. 2006, Kotzerka et al. 2011, Ceia & Ramos
2015). Moreover, if a wide range of habitats and re-
sources are used, a particular species or population
may be better buffered against anthropogenic im-
pacts, as individuals are likely to respond in different
ways to changes in the environment (Tinker et al.
2008, Phillips et al. 2009, Dias et al. 2011, Masello et
al. 2013). Hence, the characterisation of divergent be-
haviour or strategies may provide important insights
into the ecology, evolution, conservation and man-
agement of the species (Thiemann et al. 2011, Wake-
field et al. 2015, Ramirez et al. 2016).

The interest in individual variation, however, ex-
tends far beyond the marine ecology literature, and
has evolved independently in several fields, resulting
in a fragmented literature with different terminology
(Dall et al. 2012). While some researchers have fo-
cused on individual niche specialisation (particularly
in terms of behavioural traits associated with foraging
behaviour and diet choice), others have focused on
documenting behavioural syndromes or animal per-
sonalities (boldness, aggressiveness, activity, explo-
ration and neophobia), and the division of labour
within insect societies or hunting groups (Gazda et al.
2005, Dall et al. 2012). Although these similar con-
cepts (individual niche specialisation, behavioural
syndromes or animal personalities, and the division of
labour) are applied in different contexts, they are
largely concerned with the same behavioural proper-
ties, and each field uses similar statistical method-
ology for describing individual variation (Cleasby
et al. 2015).

Individual specialisation occurs when individuals
use a narrow subset of the ecological niche of the
population, for reasons not attributed to any a priori
ways of classifying individuals (Bolnick et al. 2003,
Woo et al. 2008, Votier et al. 2010, Dall et al. 2012,
Patrick et al. 2014). Indeed, there are multiple biolog-
ical reasons to distinguish between phenotypic varia-
tion that is sex- or age-related and individual-level
specialisation (Bolnick et al. 2002). In marine preda-
tors, sex differences may arise from the influence of
size dimorphism on sex-specific parental roles, inter-
sexual competition, foraging and locomotory effi-
ciency (including diving capability), or habitat spe-
cialisation (Gonzalez-Solis et al. 2000, Shaffer et al.
2001, Phillips et al. 2004a, Breed et al. 2006, Stani-
land & Robinson 2008, Quillfeldt et al. 2011, Stauss et
al. 2012); these mechanisms are potentially, but not
necessarily, different from those generating individ-
ual specialisation. Similarly, differences in behaviour
are often associated with variation in foraging abili-
ties (i.e. competitive ability) or performance of adults

of different ages or experience (Navarro et al. 2010).
After accounting for effects of sex and age, other
sources of variation among individuals may still exist;
this residual variation is what describes individual
specialisation. The unexplained within-individual vari-
ation is generally assumed to be distributed normally
and uniformly between individuals when using this
approach (Westneat et al. 2015).

Although a variety of approaches have been used
to detect individual specialisation in traits (e.g. diet
and foraging behaviour), most approaches rely on
contrasting the amount of variation within individu-
als with the variation between individuals, using re-
peatability analysis. A repeatable behaviour will
show relatively low within-individual variance com-
pared to between-individual variance (Bell et al.
2009, Nakagawa & Schielzeth 2010, Dingemanse &
Dochtermann 2013). Consistently divergent behav-
iours have also been termed specialisations. The
definition of behavioural consistency, however, is not
trivial when looking at the statistical methodology,
and there is still no universal agreement (but see
Cleasby et al. 2015). In the context of specialisation,
consistency relates to the within-individual variation.
The within-individual variation needs to be com-
pared to the between-individual variation in order to
test for specialisation (to determine a ‘high’' vs. a
'low" within-individual variance). Although behav-
ioural consistency can reflect specialisation, it does
not necessarily indicate individual specialisation as
defined here. For example, if groups of individuals
(e.g. males vs. females, adults vs. juveniles) differ in
their preferences, but these group differences are not
taken into account, then researchers might wrongly
conclude that there is individual specialisation.

Individual specialisation and behavioural consis-
tency are known to be widespread across a range of
taxa and behaviours; they have been demonstrated
for a number of species of marine predators in forag-
ing behaviour, migratory routes, dive characteristics,
diet, timing of events, activity patterns and habitat
choice, and foraging site fidelity during breeding and
non-breeding periods (Hoelzel et al. 1989, Staniland
et al. 2004, Croxall et al. 2005, Phillips et al. 2005,
2006, Sargeant et al. 2005, Guilford et al. 2011,
Thiebot et al. 2011, Patrick et al. 2014, Yamamoto et
al. 2014, Wakefield et al. 2015). Because marine pre-
dators forage on highly patchy and more or less pre-
dictable food resources at the coarse- to meso-scale
(tens to hundreds of kilometres) and over days and
weeks, the incidence of specialisation is unsurprising
(Weimerskirch 2007, Ceia & Ramos 2015, Wakefield
et al. 2015). The recurrent use of similar areas may
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increase familiarity with feeding conditions, includ-
ing fine-scale resource availability and distribution
(Hamer et al. 2007, Ramirez et al. 2016). Marine
predators will often target regions characterised by
local physical features or processes, including
eddies, frontal systems, upwelling zones and shelf
breaks, that increase primary production or serve to
aggregate various types of prey (Kappes et al. 2010,
Louzao et al. 2011, Pinet et al. 2011, Baylis et al. 2012,
Arthur et al. 2015, Wakefield et al. 2015). Foraging
behaviour and diet specialisations may therefore
emerge as a result of the spatial and temporal avail-
ability and predictability of prey (Woo et al. 2008,
Navarro & Gonzalez-Solis 2009, Patrick et al. 2015,
Sommerfeld et al. 2015). Moreover, because marine
predators frequently target such productive areas in
the breeding and non-breeding seasons, and are
central-place foragers during breeding, competition
may be high and lead to the use of divergent foraging
strategies (Estes et al. 2003, Villegas-Amtmann et al.
2008, Patrick et al. 2014, Ceia & Ramos 2015).

Several conventional approaches, such as visual
observations and the analysis of pellet, midden, re-
gurgitate or stomach contents, have been used to test
for, or to quantify, consistency in diet in marine pred-
ators (Votier et al. 2004a,b, Hamer et al. 2007, Maldini
et al. 2010, Scheel & Anderson 2012). More recently,
these approaches have been replaced or supple-
mented by the use of biologging technology and sta-
ble isotope analysis of carbon and nitrogen (Phillips
et al. 2005, Furness et al. 2006, Anderson et al. 2009,
Newsome et al. 2009, Matich et al. 2011, Kernaléguen
et al. 2015). The aim of this review is to scrutinise the
most common methods used to detect and quantify
individual specialisation and behavioural consisten-
cies in foraging, movement patterns and diet of mar-
ine predators, particularly seabirds and marine mam-
mals (Table 1). A series of fixed factors unrelated to
individual specialisation per se are also discussed
briefly, as these need to be taken into account when
applying several of the approaches presented here.
The review focuses on 3 types of data: those derived
from (1) diet assessed using conventional approaches,
(2) diet assessed using stable isotopes, and (3) track-
ing. In each case, we present the various statistical
analyses used to date, providing an overview of the
specific advantages and disadvantages.

DIET USING CONVENTIONAL APPROACHES

Many methods are used to study marine predator
diet. Traditionally, these involve the collection and

analysis of regurgitated prey items and pellets,
stomach contents, faeces, direct observations of prey
caught or carried by returning adults, or dropped
items collected at breeding colonies (Pierce & Boyle
1991, Barrett et al. 2007, Moreno et al. 2016). The
analysis of diet specialisation depends not only on
the number of individuals sampled but also, and most
importantly, on the number of independent feeding
events recorded per individual in order to calculate
an index of diet variation (Aratjo et al. 2011). Monte
Carlo simulations are the only way to do a power
analysis, but some prior knowledge of the expected
level of variability in a given population is necessary.
Although repeated observations over time are re-
quired to quantify specialisation correctly, the first
studies testing (and rejecting) the null hypothesis
that conspecifics share an identical resource distribu-
tion were derived from cross-sectional data collected
from a population at one specific point in time (e.g.
Baltz & Morejohn 1977, Lonne & Gabrielsen 1992).
Unlike this snapshot approach, longitudinal studies,
where sampling at intervals reflects multiple feeding
events of the same individual, allow specialisation to
be properly quantified at a particular temporal scale.

The simplest approach to detect specialisation is to
identify groups of specialists and generalists based
on the proportion of each dietary source in the total
diet, and assign individuals to these groups (e.g.
Pierotti & Annett 1991, Annett & Pierotti 1999, Oro et
al. 2005, Hamer et al. 2007). For example, by observ-
ing prey items being delivered to pigeon guillemot
Cepphus columba chicks for an average of 4 full days
over multiple years, Golet et al. (2000) defined spe-
cialists as individuals whose diet contained more
than 50 % of a particular item or class of items. Using
a higher threshold for the definition of specialist pre-
dators, Votier et al. (2004a) categorised great skuas
Stercorarius skua as specialist fish or bird predators
when the contents of regurgitated pellets collected
over multiple periods between egg-laying and chick-
fledging comprised 70% or more of the respective
prey, or as generalists when none of the prey items
comprised 70% or more of the diet. When data on
diet are not available, behavioural information (such
as dive depths and the proportion of trips associated
with fishing boats) or the use of areas where particu-
lar prey occur (proportion of time at each feeding
site) have been used to assign individuals to different
diet groups (e.g. Ropert-Coudert et al. 2003, Mon-
tevecchi et al. 2009, Masello et al. 2013, Granadeiro
et al. 2014, Patrick et al. 2015, Tyson et al. 2015). The
threshold used for separating specialists and gener-
alists is often arbitrary. Ideally, researchers could
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Table 1. Summary of the most common methods used to detect and quantify individual specialisation and behavioural consis-
tencies in foraging, movement patterns and diet of marine predators. WIC: within-individual component, GLMM: generalised
linear mixed-effects model, TNW: total niche width, UDOI: utilisation distribution overlap index

Method

Data type

Example

Reference

Notes

Comparing
categories based on
percentage of use

Ratios of variance
(repeatability)

GLMM with
random slopes

Distances

Overlaps

Categorical

Continuous variable

Response variable and
continuous environ-
mental variables

Spatial data

Ranges

Utilisation distribu-
tions

Prey items

Habitat types or areas
where particular prey
occur

Prey trait (e.g. size)

Stable isotope ratios

Trip summary statistics

Use/availability
locations

Foraging trip
characteristics, e.g.
path straightness

Between distribution
centroids

Between migratory
routes

In geographical space

In environmental
space (each variable

Votier et al. (2004a)

Ropert-Coudert et al.
(2003)

Woo et al. (2008)

Garcia-Tarrason et al.
(2015)

Wakefield et al. (2015)

Patrick et al. (2014)

Navarro & Gonzdalez-
Solis (2009)

Dias et al. (2011)

Orben et al. (2015)
Wakefield et al. (2015)

Wakefield et al. (2015)

Does not allow statistical
testing of the degree of
individual consistency

Using GLMMs allows the
inclusion of fixed effects
(not when using Bolnick's
WIC/TNW ratio)

Resource selection
function (habitat selec-
tion)

Random slope model

Bhattacharyya's affinity,
UDOI, etc.

Bhattacharyya's affinity,
UDOI, etc.

at a time)

deal with this issue by testing the sensitivity of their
results to different cut-offs. Furthermore, although
this approach can be used to infer differences in diet
between individuals, which can be interpreted as a
form of individual specialisation, it does not allow
estimation of its statistical significance.

To solve these issues, Bolnick et al. (2002) intro-
duced a framework to quantify and test statistically
for individual specialisation in diet that has since
been used in a wide range of taxa. By using ratios of
variance in a continuous trait measured for each prey
item (e.g. prey size), it is possible to estimate how
much of the total population variance is explained by
differences within vs. between individuals. In prac-
tice, the average intra-individual variance (‘within-
individual component' of the niche, WIC) is calcu-
lated, and divided by the sum of the inter-individual

variance (‘between-individual component’, BIC) and
the intra-individual variance (WIC + BIC = TNW, the
‘total niche width'). This index (WIC/TNW) varies
from O (complete individual specialisation) to 1 (no
individual specialisation). Empirical values can be
compared with a null model (randomisation of prey
items between individuals). This approach can be
implemented in the R package RInSp (Zaccarelli et
al. 2013). The method can also be extended to dis-
crete data such as the frequency of alternate prey in
the diet by using diversity indices as a proxy for vari-
ance (Bolnick et al. 2002). Instead of the raw number
(or mass) of diet items, values are transformed into a
proportion matrix. Examples of diversity indices
applied for this purpose are the Shannon-Weaver
index and a modified version of Hill's ratio (Golet et
al. 2000, Tinker et al. 2008, Woo et al. 2008). Alterna-
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tive indices for quantifying individual specialisation
are based on diet overlap measures between the
individual and population (Bolnick et al. 2002).

DIET (TROPHIC POSITION/CARBON SOURCE)
USING STABLE ISOTOPES

Stable isotope analysis of carbon (*3C/!2C, §'3C)
and nitrogen (1°N/"“N, §'°N) are used increasingly to
test for comsistency in trophic level and foraging
habitat over multiple timescales. In marine ecosys-
tems, the ratios of stable carbon and nitrogen iso-
topes in consumer tissues reflect those of their prey
during tissue formation in a predictable manner
(Phillips et al. 2009). Carbon stable isotope ratios
mainly reflect the foraging habitat or carbon source
of the consumer, whereas nitrogen stable isotope
ratios indicate trophic position (Bearhop et al. 2000,
Cherel et al. 2006, Ceia et al. 2012). Since different
tissues turn over at different rates, each integrates
diet information over various temporal scales (Bear-
hop et al. 2006, Matich et al. 2011, Ceia & Ramos
2015). For instance, plasma retains information from
a few days prior to sample collection, and red blood
cells from the previous 3 to 4 wk, whereas feathers
and fur represent diet during moult, since keratin is
metabolically inert after synthesis (Bearhop et al.
2006, Ceia et al. 2012, Barquete et al. 2013). Pinniped
(otariid) and sea otter Enhydra lutris vibrissae, che-
lonian shells, baleen plates and mammalian teeth
sampled sequentially can be used to represent sev-
eral years of diet information (Hobson & Sease 1998,
Walker & Macko 1999, Cherel et al. 2009, Vander
Zanden et al. 2010, Eisenmann et al. 2016). Conse-
quently, the similarity between stable isotope ratios
measured in different tissues with different turnover
rates or during different periods can be used as a
proxy for individual diet and habitat specialisations
(Wakefield et al. 2015).

313C or 8'°N are often analysed separately; how-
ever, because 8°C has a trophic component, the
studentised residuals of the relationship between
813C and 8"N can be included in models testing for
short- and long-term consistency to control for the
variability in §'°C that could be due to §'°N (Votier
et al. 2010, Ceia et al. 2012). Alternatively, a multi-
variate model which allows direct modelling of the
covariance/correlation between these traits can be
used to control for the variability in 8'*C due to that
in 8'N; however, this approach, to our knowledge,
has not been used in the marine predator literature
to date.

The most common approach, applicable to differ-
ent types of data (stable isotope ratios, trip metrics,
habitat use), includes the use of repeatability (R)
analysis (i.e. intraclass correlation coefficient, ICC),
where the level of individual specialisation in a pop-
ulation can be estimated as the proportion of the total
variance accounted for by differences among indi-
viduals, according to the following formula:

oG

R= 62 + o2 )

with 62 being the between-individual variance and
62 the within-individual variance. The way to estimate
the variance components will depend on the distribu-
tion of the data (Nakagawa & Schielzeth 2010). For
Gaussian data, such as ratios of carbon and nitrogen,
repeatabilities can be calculated either with the F
table of an ANOVA with individual identities as fixed
factors (e.g. Hamer et al. 2001, Gray et al. 2005, Van-
der Zanden et al. 2013, Oppel et al. 2015) or with
linear mixed-effects models with individual identities
treated as a random effect (e.g. Dias et al. 2011,
Matich et al. 2011, Grist et al. 2014, McFarlane Tran-
quilla et al. 2014, Kernaléguen et al. 2015, Wakefield
etal. 2015). Note that the framework proposed by Bol-
nick et al. (2002), examining the within-individual
component and between-individual component of a
niche, is essentially the same as the residual variance
(within-individual variance) and between-individual
variance when using mixed-effects models. Indeed,
the ratio WIC/TNW is very similar to the equation for
repeatability, except that the numerator represents
the within- rather than between-individual variation.
Linear mixed-effect models have the advantage of
directly estimating the variance necessary for the cal-
culation of repeatability; the quantities 62 and 6?2 can
be extracted from the output of a mixed model. For
non-Gaussian data (e.g. binary, proportion and count
data), generalised linear mixed-effects models (GLMMs)
with the appropriate link function are required (e.g.
Garcia-Tarrason et al. 2015, Potier et al. 2015). The
advantage of using mixed-effect models to calculate
repeatability is that additional covariates can be in-
cluded as fixed effects to account for known sources of
variation. However, controlling for fixed effects will
affect variance component, and hence repeatability,
estimates (Wilson 2008; adjusted repeatabilities, Naka-
gawa & Schielzeth 2010). The inclusion of predictors
associated with individual observations (season, year,
etc.) will tend to increase the repeatability, while pre-
dictors associated with the individual-level component
(sex, age, etc.) will tend to decrease repeatability
(Wilson 2008, Nakagawa & Schielzeth 2010). ANOVA
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tables use the ratio of the sums of squares to estimate
repeatabilities (Lessells & Boag 1987). The statistical
significance of the repeatability can be tested with a
randomisation test: measurements (e.g. isotope ratios)
are reshuffled many times between individuals and
repeatability is calculated for each randomisation.
The corresponding p-value is the proportion of ran-
domisations that produce a repeatability index greater
or equal to the observed repeatability. This can be
implemented in the R package rptR (Nakagawa &
Schielzeth 2010). The importance of modelling dif-
ferences in within-individual variation—e.g. using
(double) hierarchical generalised linear models, or
(D)HGLMs as presented in Cleasby et al. (2015) —has
been recognised in a variety of fields and, recently, by
ecologists, but is not discussed in detail in the present
review because, as far as we are aware, it has
featured only in a few studies of marine ecology (but
see Cleasby et al. 2015 for a review of indices).

In theory, when data are normally distributed and
the design of the study is balanced (equal number of
measurements for each individual), an even simpler
approach is to test for a correlation (Spearman's or
Pearson's correlation) between pairs of measure-
ments taken at different points in time for each indi-
vidual (correlation-based repeatability; Nakagawa &
Schielzeth 2010). If there are more than 2 measure-
ments per individual, correlations can be calculated
between each pair of measurements, and averaged
for each individual. The main issue with correlations
is that they ignore other factors, and so this might
lead to within-individual consistency being high
because the measurements were taken under the
same conditions, rather than because the individual
is consistent (Dingemanse et al. 2012).

A general question when calculating repeatability,
or any other index of individual specialisation, is what
are the appropriate sample sizes. Wolak et al. (2012)
calculated confidence intervals for a number of re-
peatability estimates presented in the literature and
found that for most of these studies, the associated
precision was low because of inappropriate sample
sizes. They provide guidelines for estimating how
many individuals, and how many measurements per
individual, are necessary to get a certain level of pre-
cision. In general, the higher the value of the repeata-
bility index, the fewer the number of measurements
and individuals needed for reasonable precision.
Wolak et al. (2012) also emphasise that the same pre-
cision can be achieved with different combinations of
number of individuals or number of measurements.
In the particular case of stable isotopes, when there
are often only 2 measurements per individual, the

number of individuals sampled will need to be high.
The formula provided by Wolak et al. (2012) for this
estimation can only be applied for repeatabilities cal-
culated using the variance components of a 1-way
ANOVA table, hence for Gaussian data. For more
complex model structures or non-Gaussian data, no
such formula exists. However, power analyses can
still be carried out at the level of each variance com-
ponent in a mixed-model framework (potentially with
both random intercepts and random slopes), using
the R package pamm (Martin et al. 2011).

BIOLOGGING STUDIES

A variety of devices have been used to examine
animal movements, including platform terminal trans-
mitter (PTT), GPS, and geolocator or global location
sensing (GLS) loggers. These devices have different
performances, and the general trade-off is between
temporal resolution, deployment duration, device
mass and cost (Wakefield et al. 2009). PTTs can pro-
vide multiple locations per day with accuracy typi-
cally <15 km (Burger & Shaffer 2008, Phillips et al.
2007, Costa et al. 2010). Due to their high cost, these
devices have, to an extent, been replaced in the last
decade by GPS loggers. The latter have a much
better spatial accuracy (within 10 m) and temporal
resolution (up to 1 Hz) (Guilford et al. 2008, Phillips et
al. 2007, Kotzerka et al. 2010). In diving predators
that only surface for short periods, very rapid
(<100 ms) acquisition Fastloc GPS is required, and is
slightly less accurate than conventional GPS (50 % of
locations within 36 m; Dujon et al. 2014). Because of
the very high temporal resolution, fine-scale behav-
ioural information can be inferred from movement
(Guilford et al. 2008, Freeman et al. 2010). The use of
miniaturised GPS loggers, however, is still limited by
the short lifespan (weeks) of devices without solar
panels. The use of GLS loggers avoids some of these
problems as they have low power requirements, and
are small enough to be attached long-term to a ring
on the tarsus or a flipper tag (Wilson et al. 2002,
Phillips et al. 2004b, Shaffer et al. 2005, Staniland et
al. 2012). This technology is unsuitable for fine-scale
spatial analysis, but is ideal for monitoring large-
scale movements during the non-breeding season or
over extended periods. Amongst the disadvantages,
GLS loggers will provide only 2 locations per day
with an average accuracy of 186 + 114 km, and lati-
tude is difficult to estimate from light for 3 to 4 wk
around the equinoxes (Phillips et al. 2004b, Shaffer et
al. 2005). Other devices can be deployed that collect
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immersion, acceleration, temperature, images or
other data allowing more detailed investigations into
at-sea activity (Phalan et al. 2007, Mackley et al.
2010, 2011, Gutowsky et al. 2014, Kernaléguen et al.
2015).

Biologging studies can be used to assess the poten-
tial specialisation or flexibility of individuals from
within a population because individuals can be
tracked across multiple trips or over the course of a
year or longer (Pinaud & Weimerskirch 2005, Soanes
et al. 2013, Muller et al. 2014). As such, the data can
be used to examine repeatability in foraging destina-
tions (i.e. site fidelity), migration schedules (timing
and duration of events), fidelity to wintering areas
and routes, and consistency in habitat use or prefer-
ence (Croxall et al. 2005, Phillips et al. 2005, 2006,
Guilford et al. 2011, Thiebot et al. 2011, Baylis et al.
2015a, Yamamoto et al. 2014, Arthur et al. 2015).

Analyses of trip summary statistics

Spatial information collected by tracking devices
will typically be in 2 dimensions (latitude and longi-
tude). Therefore, in order to apply the methods listed
above (correlations and repeatability analysis), spa-
tial data are typically reduced via summary statistics
to a single dimension, or are analysed separately
(e.g. Phillips et al. 2005, Dias et al. 2013, Ceia et al.
2014, Yamamoto et al. 2014, Potier et al. 2015). The
most common summary data derived from each trip
that have been used in this way include the total du-
ration, total distance travelled (summed great circle
distances between fixes), maximum range (great cir-
cle distance to the furthest location), and bearing at
departure or to the furthest point (Hamer et al. 2001,
2007, Soanes et al. 2013, Ceia et al. 2014, Patrick et
al. 2014, Baylis et al. 2015b, Oppel et al. 2015, Potier et
al. 2015). For the non-breeding season, the analyses
are often of migration schedules (timing and duration
of events; Croxall et al. 2005, Phillips et al. 2005, Dias
et al. 2011, Yamamoto et al. 2014), or the total dis-
tance travelled during the migration (Muller et al.
2014). Other 1-dimensional data used in studies of in-
dividual specialisation include dive characteristics
and activity metrics (Laidre et al. 2002, Staniland et
al. 2004, Cook et al. 2006, Ratcliffe et al. 2013, Patrick
et al. 2014, Potier et al. 2015, Wakefield et al. 2015).

Correlation tests can be performed to compare the
above measures collected at different points in time
(e.g. Phillips et al. 2005, Soanes et al. 2013). How-
ever, these tests do not allow individual specialisa-
tion per se to be quantified. The alternative is to carry

out repeatability analyses, as presented in the 'Diet
(trophic position/carbon source) using stable iso-
topes' section, e.g. of proportions of V-shaped dives
(Patrick et al. 2014, Wakefield et al. 2015), wintering
destinations (Perez et al. 2014) or number of dives per
foraging trip (Potier et al. 2015).

Spatial analyses: distance between centroids of
distributions or migratory routes

It is possible to study individual specialisation in
space, and not only in trip characteristics, based on
distances between the centroid of the locations at 2
different times for the same individuals tracked dur-
ing the breeding season (Navarro & Gonzdlez-Solis
2009, Ceia et al. 2014), or between centroids in differ-
ent winters (Dias et al. 2011, Fifield et al. 2014,
McFarlane Tranquilla et al. 2014, Yamamoto et al.
2014, Lea et al. 2015). Distances can also be calcu-
lated between pairs of migratory routes (e.g. for the
same individual during consecutive years), either be-
tween positions at certain landmarks (Yamamoto et
al. 2014), or as the mean distance between each posi-
tion on one route and the nearest position on the
other (Guilford et al. 2011, Dias et al. 2013). The
smaller that distance, the more consistent the indi-
vidual. To compare the within- and between-individ-
ual distances (i.e. evaluate the statistical significance
of individual consistency), one approach is to use dis-
tances calculated for pairs of centroids or routes as
the response variable in a (G)LMM with individual
(same vs. different) as a random effect, and check for
the significance of the random effect (Dias et al.
2013). The second, and more widely used approach,
is to compare the calculated within-individual dis-
tances with a null distribution of distances generated
by reshuffling either locations or migratory tracks be-
tween individuals (Navarro & Gonzéalez-Solis 2009,
Dias et al. 2011, Fifield et al. 2014, McFarlane Tran-
quilla et al. 2014). This method based on distances
does not take into account the spread of the locations
around the centroids: hence, although useful to
detect a shift in the general distribution, it would not
detect a change only in range size. It also has the dis-
advantage of only allowing individual specialisation
to be detected, but not quantified.

Spatial analyses: overlap between distributions

Specialisation can also be estimated as the overlap
between distributions of the same individual over
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time. One approach is to overlay the locations (dives,
landings or feeding events etc.) on a grid, and count
the number of shared grid cells between different
trips made by the same individual (Hedd et al. 2001,
Baylis et al. 2015b, Orben et al. 2015, Sommerfeld et
al. 2015). These values are usually compared with
null models based on randomisation of individual
identities. Problems include the sensitivities to grid
cell size and to the resolution of the tracking data.
Indeed, if the data are too coarse, there is a risk that
genuine differences between individuals will be
missed. Ideally, data should be analysed on a scale
that is as fine as possible, although not smaller than
the accuracy of the tracking device; however, if the
grid cells are too small, potentially no 2 points from
the same bird will ever fall in the same cell even if
these points are relatively close.

Probabilistic measures offer an alternative ap-
proach; a utilisation distribution (UD) is generated
from tracking data, and the polygons representing
core and general use areas (typically 50 % and 90/
95 %, respectively) are then compared in an analysis
of overlap to determine the probability of individuals
being located repeatedly in the same area. This
method has been used to compare foraging areas in
consecutive trips during the breeding season (Phil-
lips et al. 2006, Pettex et al. 2012, Soanes et al. 2013),
and areas used from one year to the next (Chilvers
2008, McFarlane Tranquilla et al. 2014, Muller et al.
2014). The problem is that it does not exploit the
information on the complete UDs (cf. Ceia et al. 2014,
2015, Fifield et al. 2014, Wakefield et al. 2015). In
contrast, the indices described by Fieberg & Ko-
channy (2005) provide a more elegant means of rep-
resenting the overlap between pairs of UDs, mainly
based on the product of 2 UDs. They suggested the
use of Bhattacharyya's affinity when the aim is to
quantify the degree of similarity among UD estimates
(see Wakefield et al. 2015), and the utilisation dis-
tribution overlap index (UDOI) when a measure of
space-use sharing is desired. Isopleths can, of course,
still be informative when using these indices. The
observed distribution of the indices can be compared
to randomised distributions. In general for methods
using UDs, care needs to be taken in the definition of
the smoothing factor (h value) required for kernel
analysis, since it can influence the resulting UD. A
constant value of h for all individuals should be pre-
ferred (Fifield et al. 2014); otherwise, variation in
behaviour can be indistinguishable from that due to
the choice of smoothing parameter.

Environmental (habitat) analyses

Tracking data provide information not only on the
geographical space, but also on how individuals use
their environment (habitat). Indeed, remotely-sensed
environmental data can be extracted for each animal
location and, as with other types of movement infor-
mation, traditionally each environmental dimension
is analysed separately, typically calculating the over-
lap (Bhattacharyya's affinity) between the usage dis-
tributions represented by pairs of trips for each indi-
vidual (Wakefield et al. 2015). Alternatively, it is
possible to include all variables in the same model,
using random slope models (allowing for the re-
sponse to environmental conditions to vary between
individuals). This has been used to investigate how
environmental conditions influence the track charac-
teristics, e.g. speed or straightness of the path of
different individuals (Patrick et al. 2014). The same
approach using random slopes can be used in a re-
source selection function framework in which habitat
selection is estimated by contrasting environmental
conditions at ‘used’ locations (i.e. the recorded loca-
tions) and ‘available’ locations (randomly simulated
locations in the accessible area around the recorded
locations), in general using a generalised linear
model (GLM) with a logistic link. This can be
extended to GLMMs, using random slopes (individu-
als as a random effect) to detect differences between
individuals in selection for each variable.

CONTROLLING FOR PSEUDO-REPEATABILITY

Some effects can create bias in the estimation
or interpretation of levels of individual variation,
which can inflate repeatability estimates, leading to
pseudo-repeatability (Dingemanse & Dochtermann
2013). This inflation occurs when predictor variables
(i.e. fixed effects) that influence within-individual
variation vary between individuals because of a sam-
pling or measurement error; or when biologically rel-
evant parameters (i.e. fixed effects) that explain
between-individual differences are not taken into ac-
count in models (Dingemanse & Dochtermann 2013,
Westneat et al. 2015). Other explanations proposed
for heterogeneity in residual within-individual vari-
ance are the 'organismal error’ (when the variance in
phenotype is due to errors made by individuals when
assessing their environment, e.g. individuals mis-
identify an environmental cue and produce a re-
sponse which would be better suited to another envi-
ronment) and the ‘random residual within-individual
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variance' (when variation is due to a random process;
e.g. stochastic variation in density and location of
prey), which are discussed in detail in Westneat et al.
(2015).

Several issues related to temporal scale exist.
Indeed, consistency detected at different timescales
has different ecological interpretations (see Réale &
Dingemanse 2001 for a related discussion on the
study of animal personality). If individuals are consis-
tent over a short but not over a long timescale, the
‘specialisation’ detected is likely to be due to varia-
tion in the state of the individuals (e.g. hunger level
or reproductive state), or other short-term uncon-
trolled effects (e.g. immediate environmental condi-
tions). If individuals are consistent over a long time-
scale, the cause is likely to be due to genetic,
parental, individual quality or possibly permanent
environmental effects. If specialisation increases
over long timescales, the causes are likely to be
related to some learning process (over the lifespan of
an individual) or selective disappearance (over sev-
eral generations, i.e. if specialists are fitter, general-
ists will selectively disappear from the population).
This emphasises the importance of carrying out stud-
ies that, ideally, cover multiple time intervals (Kerna-
léguen et al. 2015).

Conversely, incorrect combination of time periods
can lead to erroneous interpretations. Indeed, if indi-
viduals specialise on different resources or environ-
ments over different seasons, studying specialisation
over the whole year, for example, might prevent the
detection of individual specialisation (although this is-
sue can be dealt with by including the correct fixed ef-
fects). In the case of seabirds, although several studies
have revealed that dietary and behavioural specialisa-
tions are widespread, it is unclear for how long these
specialisations are maintained (Masello et al. 2013,
Patrick et al. 2014; but see Wakefield et al. 2015). It is
likely, however, that repeatability in foraging behav-
iour declines at longer temporal scales because of tem-
poral changes in the availability and predictability of
resources (Woo et al. 2008, Bell et al. 2009, Ceia et al.
2014). Weimerskirch (2007) also suggested that site fi-
delity not only depends on the timescale, but also on
the habitat visited. Almost all published studies to date
were limited to data from relatively few individuals
tracked or observed over short periods of time (Zydelis
et al. 2011). Novak & Tinker (2015) also raise this point
for time-aggregated observations related to diet, not-
ing that increasing sampling time increases knowledge
of an individual's diet but comes with the risk that the
ability to detect meaningful temporal patterns in prey
selection is reduced.

The timing of the study can also bias the results for
reasons that are not necessarily linked to individual
preferences. For example, if individuals are tracked
only during consecutive trips or for a few consecutive
years, when conditions may be more similar than
after longer intervals, the lack of within-individual
flexibility in behaviour may reflect either that there
was no environmental change influencing prey
availability, or site fidelity (Chilvers 2008, Pettex et
al. 2012, Carneiro et al. 2016). However, if tracked for
multiple years with contrasting environmental condi-
tions and prey availability, the repeated use of an
area would indicate site fidelity. Such consistency in
space use could also reflect behavioural plasticity,
and the two mechanisms are hard to tease apart.

Timing and spatial accessibility are also important
when studying between-individual differences. If all
individuals in the study do not have access to the
same environment or prey (either because the condi-
tions change or because individuals live in distant
areas with different characteristics), then the pop-
ulation might exhibit apparent specialisation, even
though individuals are not specialised. Thus, to be
sure that it is indeed specialisation that is observed,
studies should minimise the risk of differences in
habitat or resource availability between individuals,
which in practice is a major challenge. Note that this
can to some extent be resolved by combining trophic
markers such as stable isotope ratios with tracking in
multiple years (Baylis et al. 2015b).

Finally, populations can exhibit different foraging
behaviours depending on the season (e.g. for sea-
birds, even within the breeding season, energy re-
quirements and the constraint of the colony usually
differ between pre-laying, incubation, brood-guard
and later chick-rearing). It is important to take these
changes into account, otherwise apparent individual
differences might arise as an artefact of mismatches
in the temporal scale of the measurements.

EFFECTS SPECIFIC TO STABLE ISOTOPE DATA

Studies using stable isotopes as a measure of in-
dividual specialisation/consistency in resource use
should ideally use methods that allow the partition-
ing of isotope variation between different factors,
and individual effects, such as calculating the ad-
justed repeatability from mixed-effects models. It is
also possible to control for some of this variation dur-
ing sample collection and preparation. Factors that
should be taken into account when estimating short-
and long-term spatial consistency or dietary speciali-
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sation (8!3C and 8N values) relate to (1) the compar-
ison of tissue types with different enrichment factors
for carbon and nitrogen isotopes (Cherel & Hobson
2007, Quillfeldt et al. 2008), (2) the use of tissues with
different turnover rates (e.g. plasma and red blood
cells), but with some overlap in terms of diet integra-
tion period (Votier et al. 2010, Ceia et al. 2015), (3)
the differences in baseline isotope ratios in foraging
areas used by individuals (in the marine environ-
ment, different oceanic processes and sources of
organic matter can result in spatial changes in base-
line stable isotope ratios; Moreno et al. 2011), and (4)
the variation in baseline isotope ratios between dif-
ferent periods and years (Aratjo et al. 2011, Wake-
field et al. 2015). In addition, intrinsic factors, which
are linked to physiological and life history traits (sex,
breeding stage, experience, reproductive status etc.)
can also be taken into account, although this will
tend to decrease repeatability estimates (see Wilson
2008 for a discussion).

Tissue type

Keratinous tissues such as feathers, fur, vibrissae
and chelonian shells are enriched in §°C and 3N
when compared with blood, even when synthesised
over the same time periods, due to different protein
sources, use of endogenous reserves during feather
synthesis, or when plasma contains §'°N-depleted
uric acid (Hobson et al. 1996, Cherel et al. 2005,
Cherel & Hobson 2007, Quillfeldt et al. 2008). Lipid
concentrations can also lead to particularly depleted
813C values (Bearhop et al. 2000, Votier et al. 2010).
Lipid extraction from fatty tissues is therefore recom-
mended prior to 8°C analysis (Cherel & Hobson
2007, Wakefield et al. 2015). However, extraction
techniques can affect 8'°N in an unpredictable man-
ner (Cherel et al. 2005, Bond & Jones 2009, Wake-
field et al. 2015). Ideally, 2 samples, one to measure
513C (delipidated) and one to measure 3°N (non-
delipidated), should be analysed (Paiva et al. 2010,
Wakefield et al. 2015). The low lipid level of kerati-
nous tissues, blood cells and of whole blood does not
affect their 8'C, and so lipid extraction is not
required (Cherel et al. 2005, Bond & Jones 2009,
Matich et al. 2011, Ceia et al. 2012, 2015). High and
varying concentrations of lipid in blood plasma, how-
ever, can result in depleted 8'3C values (Votier et al.
2010, Ceia et al. 2012, 2015). Lipid extraction can
often be impracticable because of the small quanti-
ties of blood plasma (Votier et al. 2010, Garcia-
Tarraso6n et al. 2015, Wakefield et al. 2015). In order

to account for the remaining potential differences in
enrichment factors, correction factors can be used
(Cherel et al. 2005, Quillfeldt et al. 2008, Votier et al.
2010, Garcia-Tarrasén et al. 2015) or tissue type
included as a fixed effect in adjusted repeatability
analysis (Wakefield et al. 2015).

Overlap in diet integration periods

Several studies have modelled short-term consis-
tency in isotope ratios by comparing values between
plasma and red blood cells collected in a single event
(e.g. Ceia et al. 2012, 2014, 2015, Wakefield et al.
2015). Although each tissue has a different turnover
rate, the integration of prey isotopes into body tissues
is a continuous process, and the analysis of short-
term consistency using the same blood sample in-
evitably leads to some overlap in the periods which
the samples represent (Votier et al. 2010, Ceia et al.
2015). To overcome this issue, when combined with
tracking analysis, some studies have collected blood
in 2 sampling events associated with the capture
(deployment) and recapture (retrieval) of tracking
devices, using the red blood cell fraction from initial
capture and the plasma fraction from the recapture
for subsequent analysis (Votier et al. 2010, Ceia et al.
2015), or only the plasma collected during both
events (Garcia-Tarrason et al. 2015).

Spatial and temporal variation in isotopic baselines

Marine isoscapes can change depending on nutri-
ent source, primary productivity, depth, latitude and
oceanic frontal region, which can confound direct
comparisons of trophic levels between animals from
different regions (Stowasser et al. 2012, Moreno et al.
2016). Information on isotopic ratios of potential prey
from different foraging areas (which can be deter-
mined from tracking devices) are essential to distin-
guish the relative importance of prey vs. habitat spe-
cialisation (Moreno et al. 2016). Otherwise, it is not
possible to tell whether a change in isotopic value
from t; to t, (or tissue type x and y) represents a wider
diet or spatial niche, or the same diet consumed in
areas or periods with different isotope baselines
(Ceia et al. 2014, Moreno et al. 2016). The latter
applies in particular to species that forage across
environmental boundaries and change their foraging
areas on a seasonal basis (Stowasser et al. 2012).
However, because most marine organisms are asso-
ciated with specific water masses, even when appar-
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ent differences in trophic position are most likely
related to the use of areas with different baselines,
dietary differences may still be informative about the
use of particular prey (Jaeger et al. 2014). To date,
there has been only one study including estimates of
baselines as fixed effects in adjusted repeatability
analysis of 8°C and §'N in the blood of northern
gannets Morus bassanus from the Bass Rock, within
and across years (Wakefield et al. 2015).

EFFECTS SPECIFIC TO TRACKING DATA

Studies of behavioural consistency and individual
specialisation based on tracking data should, where
possible, apply a variety of complementary ap-
proaches. It is straightforward to include fixed factors
in analyses of summary statistics, but more difficult to
control for these effects in spatial analysis. For the
latter, the analyses have to be carried out separately
for each level of those factors (e.g. males and females
treated separately), but this implies the need for big-
ger sample sizes. In addition to sex and age effects,
life-history stage and breeding status (failed or suc-
cessful) can potentially influence foraging strategies
and therefore should also be considered when test-
ing for individual specialisation. Breeding status, for
example, may not only affect timing of events (e.g.
Croxall et al. 2005, Phillips et al. 2005, Bogdanova et
al. 2011, Dias et al. 2011, Yamamoto et al. 2014), but
also the use of migratory destinations and routes.
When this information is not known, such effects can
be reduced by restricting comparisons to particular
time windows, for example to minimise the risk that
apparent differences between individuals might
relate to differences in migration schedules that
ultimately took similar routes (Guilford et al. 2011).
Behaviour may also differ between different types
or phases of foraging trips (outward and return
journeys, and hunting and searching for food), or
migration (outward and return migration, and resi-
dence at the main staging and wintering areas). For
birds, during chick-rearing, different types of trips
can be performed by adults while provisioning
their chicks; short trips to maximise delivery rate per
unit of time and long trips that enable adults to
restore their own reserves (Weimerskirch et al. 1994,
Weimerskirch 1998; but see Phillips et al. 2009). All
these potential differences need to be taken into con-
sideration when analysing individual specialisation,
as the constraint to return sooner to the colony can
prevent individuals from visiting areas that would
otherwise be optimal.

CONCLUSIONS

Individual specialisation can be calculated by
using repeated measurements for each individual,
then calculating the within- and between-individual
variation. Although there are several alternatives
(see Table 1), the most common and flexible ap-
proach is to calculate repeatability, using the vari-
ances extracted from GLMMs with individual as a
random effect (either random intercepts or random
slopes). To obtain estimates of individual specialisa-
tion, care needs to be taken to exclude effects that
can lead to pseudo-repeatability. In addition, ana-
lysing a variety of data types simultaneously can pro-
vide better insights. Analysis and interpretation can
be improved if the study involves a representative
number of individuals having access to the same
habitat and resources (preferably over the same peri-
ods), and over short and long timescales. Statistical
analyses of individual differences should be rigorous
and follow advice mentioned in this review. Studies
that conformed to these recommendations have
found convincing evidence of behavioural consis-
tency and individual specialisation in marine preda-
tors, albeit typically over relatively short timescales,
as well as in a wide range of other taxa (e.g. Woo et
al. 2008, Matich et al. 2011, Ceia et al. 2014, Patrick
et al. 2014, Wakefield et al. 2015). In contrast, the
ecological implications of consistent differences in
resource or habitat selection at the individual or pop-
ulation level remain unclear (Ceia & Ramos 2015).
However, such differences are likely to affect the
conclusions of population dynamics models (as does
individual consumer behaviour or trait variation;
Okuyama 2008, Schreiber et al. 2011). Indeed, indi-
vidual specialisation can affect interactions between
individuals (e.g. by reducing intraspecific competi-
tion; Bolnick et al. 2011, Matich et al. 2011). Such dif-
ferences may also reduce the predictive power of
existing ecological models, for example species dis-
tributions models that are used increasingly to pre-
dict the response of a species to climate change
or following an introduction (Pearman et al. 2008),
wherein projections are made from average values
for the population. Indeed, if individuals differ in
their environmental tolerance (or preferences), spe-
cies—environment relationships inferred from only a
sample of individuals might not be representative of
the ability of the species to cope with change.

Although in this review we have presented the
most common methods used by the marine ecology
research community to study individual specialisa-
tion and behavioural consistency, it is important to
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note that there have been a number of interesting
methodological developments in the animal person-
ality field which build on repeatability analysis to
ask targeted research questions, especially related to
within- vs. between-individual variation, and parti-
tioning of variance components (van de Pol & Wright
2009, Twiss & Franklin 2010, Dingemanse & Dochter-
mann 2013). Several of these methods have the
potential to be applied to marine predators. Further-
more, the analysis of movement data has become
increasingly sophisticated, with the development of
state-space models and approaches based on hidden
Markov models that can be applied to the detailed
information from whole tracks. These relatively new
approaches are statistically complex and have yet to
be used in the context of individual specialisation,
but offer the possibility of capturing fine-grained be-
havioural responses and preferences that are likely
overlooked when summarising movements with a
few simple statistics. Combined with the decreasing
costs and increasing accuracy of biologging devices,
we expect these new methods to greatly increase our
ability to study specialisation in marine predators.
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ABSTRACT: Carry-over effects, whereby events in one season have consequences in subsequent
seasons, have important demographic implications. Although most studies examine carry-over
effects across 2 seasons in single populations, the effects may persist beyond the following season
and vary across a species’' range. To assess potential carry-over effects across the annual cycle and
among populations, we deployed geolocation loggers on black-legged kittiwakes Rissa tridactyla
at 10 colonies in the north-east Atlantic and examined relationships between the timing and
destination of migratory movements and breeding success in the year of deployment and sub-
sequent season. Both successful and unsuccessful breeders wintered primarily in the north-west
Atlantic. Breeding success affected the timing of migration, whereby unsuccessful breeders
departed the colony earlier, arrived at the post-breeding and main wintering areas sooner, and
departed later the following spring. However, these patterns were only apparent in colonies in the
south-west of the study region. Furthermore, the effect of breeding success was stronger on
migration timing in the first part of the winter than later. Timing of migratory movements was
weakly linked to subsequent breeding success, and there was no detectable association between
breeding success in the 2 seasons. Our results indicate temporal structure and spatial hetero-
geneity in the strength of seasonal interactions among kittiwakes breeding in the north-east
Atlantic. Variable fitness consequences for individuals from different colonies could have impor-
tant implications for population processes across the species’' range and suggest that the spatio-
temporal dynamics of carry-over effects warrant further study.
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INTRODUCTION

Understanding the fitness consequences of life-
history decisions is fundamental to the study of pop-
ulation ecology (Stearns 1992). These decisions may
impact on fitness immediately or affect subsequent
life-history stages (Lindstrom 1999, Metcalfe & Mon-
aghan 2001). Among potentially important down-
stream fitness consequences are seasonal carry-over
effects, whereby processes in one season have conse-
quences in subsequent seasons (Norris & Marra
2007, Harrison et al. 2011). Carry-over effects have
been demonstrated in a wide array of taxa, including
insects, amphibians, fish and mammals (reviewed by
Harrison et al. 2011). Much of the research on carry-
over effects has been undertaken on birds, where
studies initially focussed on the effect of winter eco-
logy on subsequent breeding performance, based
primarily on stable isotope signatures

ance not just in the subsequent summer but also in
the following winter and beyond; similarly, the costs
of reproduction in summer may extend beyond the
following winter into subsequent seasons (Senner et
al. 2014; Fig. 1). Accordingly, a growing number of
studies have tested seasonal interactions at longer
temporal scales than the traditional 2-season com-
parison (Inger et al. 2010, Hoye et al. 2012, Senner et
al. 2014, Latta et al. 2016). A second limitation of
existing research is that studies have typically
focussed on single populations, yet seasonal interac-
tions may vary across a species’ range (Fig. 1). For
example, differences in local environmental condi-
tions during the summer may lead to variable down-
stream effects on characteristics such as timing of
migration, with carry-over effects potentially weaker
when conditions are more favourable (Legagneux et
al. 2012, Harrison et al. 2013). Alternatively, if differ-
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that carry-over effects may have pro-
found repercussions for future fitness
and population dynamics (Norris &
Marra 2007, Harrison et al. 2011).
The majority of studies of carry-
over effects have considered associa-
tions between 2 seasons. However,
decisions or conditions experienced
during the winter may affect perform-

Fig. 1. Temporal structure and spatial variation in seasonal interactions. Tem-
poral structure (illustrated as links between summer breeding success and
subsequent seasons from autumn to the following summer) in Population 1
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by seasonal interactions (A) weaken over time, evidence for

‘true’ carry-over effects (width of line denoting strength of link) or (B) are sta-
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variation may exist whereby strength of seasonal interactions varies between
populations: (C) carry-over effects are stronger in Population 2 (vs. A); simi-

larly, (D) season.

al interactions resulting from consistent within-individual
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ent populations have common wintering grounds,
individuals may adjust their migration schedules to
reach the wintering grounds at the same time in
order to maximise survival probability. Such varia-
tion in timing could shape the strength of carry-over
effects across a species' range, with potentially major
consequences for meta-population dynamics (Norris
& Marra 2007, Harrison et al. 2011).

Studies that quantify seasonal interactions over
longer periods than the traditional 2-season time
scale in multiple populations can also contribute to
the challenging question of whether such inter-
actions arise because of genuine carry-over effects
(Norris & Marra 2007, Harrison et al. 2011) or be-
cause of cross-seasonal correlations due to stable
within-individual performance in breeding and over-
winter life-history decisions (Daunt et al. 2006, 2014,
Harrison et al. 2011; Fig. 1). Quantifying the relative
importance of extrinsic and intrinsic effects has
proved challenging in correlative studies, since they
are confounded (individuals may vary both in per-
formance and environments experienced). Two ap-
proaches have been used to date to tease apart these
effects: experimental manipulation in one season as a
causal test of carry-over effects (Studds & Marra
2005, Legagneux et al. 2012, Catry et al. 2013,
Schultner et al. 2014) and longitudinal measure-
ments in individuals across a range of environmental
conditions whereby they act as their own controls
(Daunt et al. 2014). Studies that investigate the tem-
poral structure in the strength of seasonal inter-
actions in multiple populations provide a third op-
tion. Specifically, effects that are found consistently
across populations to be stronger on events in the
adjacent season than in subsequent seasons would
provide evidence for genuine carry-over effects,
whereas a sustained relationship over time would
suggest that intrinsic effects predominate (Fig. 1).

In this study, we used data spanning 1 full annual
cycle (breeding season to subsequent breeding sea-
son) from 10 colonies of black-legged kittiwake Rissa
tridactyla (hereafter ‘kittiwake') across a 23° latitudi-
nal range and 45° longitudinal range in the north-
east Atlantic to test for spatio-temporal variation
in carry-over effects between reproductive perform-
ance and migratory movements. Previous work has
demonstrated significant links between reproductive
performance, timing of autumn migration and winter
destination at 1 colony in the region (Bogdanova et
al. 2011). In addition, a multi-colony study of winter
distribution reported marked variation in timing of
migration yet strong winter admixing among individ-
uals from different breeding populations (Frederik-

sen et al. 2012), which could form the requisite con-
ditions whereby strength of carry-over effects vary
across a species’ range.

Our study tested 3 specific hypotheses. First, we
hypothesised that, across colonies, there would be an
overall relationship between breeding success and
scheduling and location of migration, such that un-
successful individuals depart the colony earlier,
migrate farther, reach their winter destinations sooner
and spend longer at those destinations, in line with
previous findings in this and other species (Summers
et al. 1996, Phillips et al. 2005, 2007, Bogdanova et al.
2011). Second, we hypothesised that there would be
spatial variation in the strength of carry-over effects
among colonies, since variation in environmental
conditions among colonies is likely, and more favour-
able conditions are predicted to dampen carry-over
effects (Legagneux et al. 2012, Harrison et al. 2013).
Third, we tested alternative hypotheses on the tem-
poral structure of seasonal interactions: (1) relation-
ships are stronger with the adjacent season than with
subsequent seasons, representing evidence for true
carry-over effects (Harrison et al. 2011); (2) relation-
ships are sustained across time, representing evi-
dence that intrinsic performance underpins seasonal
interactions (Daunt et al. 2006).

MATERIALS AND METHODS
Study sites and field data collection

The study was undertaken on adult kittiwakes
breeding at 10 colonies across the north-east Atlantic
(Table 1, Fig. 2; and see Frederiksen et al. 2012). In
the 2009 breeding season, individuals were captured
at the nest site using noose poles and fitted with geo-
location loggers (Mk13 British Antarctic Survey; 20 x
9 x 6.5 mm; mass: 1.8 g) attached to a plastic leg ring.
Deployment methods and protocols were the same at
all colonies, and handling time was typically less
than 5 min. Breeding success was subsequently
recorded for the tracked adults as the number of
chicks fledged per nest or, at some colonies, the num-
ber of chicks alive at mid to late chick-rearing, a reli-
able indicator of number of chicks fledged (Lewis et
al. 2001). Breeding success was unavailable for 1 of
the colonies (Hafnarhé6lmi, Iceland). In 2010, the
study individuals were recaptured, the loggers
retrieved and breeding success recorded at all
10 colonies. Deployment and retrieval took place
between mid-incubation and mid-chick-rearing,
with the majority of captures occurring during early
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Table 1. Study colonies of black-legged kittiwakes Rissa tridactyla, number of
geolocation loggers deployed (Depl.), number of individuals tracked success-
fully (Retr.: loggers retrieved), and those with known breeding success in both

(Griffiths et al. 1996) or morphometric
measurements (head-bill and wing

50°N+

40°

years, in 2009 only and in 2010 only

length; Gasparini et al. 2002).
A previous study at 1 of these colo-

Colony Lat. Lon. Depl. Retr. —Breeding success— nies (Isle of May National Nature
2009 & 2009 2010 Reserve, Scotland) found no negative
2010 impact of the loggers on breeding
Norway success or probability of returning to
Grumant 78°10'N  15°09'E 20 16 13 0 2 the colony in the following year (Bog-
Bjernoya 74°23'N 19°08'E 20 15 5 8 0 danova et al. 2011). We did not test for
Horneya 70°23'N  31°09'E 20 15 13 1 0 1 ffects in th t stud
Anda 69°04'N 15°10E 20 12 10 2 0 ogger ellects 1n the current study,
Rost 67°30'N  12°05'E 39 22 13 0 5 but since field protocols at all colonies
Iceland were the same as in the previous
Hafnarhélmi 65°32'N  13°45'W 20 12 0 0 9 study, we have no reason to expect
Faroe Islands L .
Stéra Dimun 61°41'N  06°45W 20 10 9 0 0 negative impacts of the devices.
UK
Fair Isle 59°32'N 01°38'W 18 15 15 0 0
Isle of May 56°11'N  02°33'W 25 16 14 0 0 .
Rathlin 55°29'N 06°19W 18 5 5 0 0 Data processing
Total 220 138 97 11 16
Light intensity data recorded by the

Barents
Sea

NwW
Atlantic 1

v geolocation loggers were processed
600 to obtain the timing of sunrise and
N sunset. Best results were obtained
with a threshold light intensity of 10
and a sun elevation angle of -3°. For
each day at local noon and midnight,
latitude was estimated from day
length and longitude from the timing
of local noon/midnight in relation to
UTC. Locations were excluded during
50° the breeding season when there are
frequent light interference events,
and around the equinoxes (8 Septem-
ber to 20 October and 20 February to
3 April; Frederiksen et al. 2012), when
latitude cannot be calculated reliably.
In Arctic areas, it was not possible

to obtain locations during the period

,/ Central
, Atlantic | NE
" ,' Atlantic
]
T
0 500 1000 2000 km
50° 40° 30° 20° 10°W 0° 10°E

Fig. 2. Location of study colonies of black-legged kittiwakes Rissa tridactyla
(blue stars: NE colonies, red stars: SW colonies); dashed red lines indicate the

of constant daylight in the summer.
For example, at 66, 70, 74 and 78°N,

boundaries of wintering areas

chick-rearing. In total, 220 loggers were deployed in
2009, 138 of these were retrieved in 2010, of which
124 (89.9%) had breeding success data for 2009,
2010 or both years, 5 (3.6 %) were excluded because
of logger malfunction, and 9 (6.5 %) were excluded
because breeding success data were not available.
Sample size of individuals that were tracked success-
fully and for which breeding success was known is
shown in Table 1. The sex of a subset of the indi-
viduals was determined using molecular techniques

the sun elevation angle is constantly
above -3° for the periods 26 May to
18 July, 9 May to 5 August, 25 April to
19 August and 14 April to 30 August, respectively.
The retained locations were smoothed to reduce the
influence of outliers when calculating migration met-
rics. Full details of the data processing and calibra-
tion are provided by Frederiksen et al. (2012).
Migratory movements were identified based on
visual examination of the location data in ArcGIS
(v.10.1, ESRI) and were indicated by series of fixes in
a consistent direction (average [+SE] distance be-
tween adjacent fixes: 254 + 37 km). In contrast, clus-
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ters of fixes lacking directional movement repre-
sented residency time within wintering areas (aver-
age distance between adjacent fixes: 99 + 5 km). Out-
side the breeding season, individuals from the study
colonies range widely across the North Atlantic and
adjacent seas (North Sea, Norwegian Sea, Barents
Sea and Labrador Sea; Bogdanova et al. 2011, Fred-
eriksen et al. 2012). Wintering areas were defined
as follows: the North Atlantic was split into 3 parts
of approximately equal size (NW: >45°W,; Central:
25-45°W; NE: 5-25°W; following Bogdanova et al.
2011); the remaining areas were geographically
defined seas (North Sea, Norwegian Sea and Barents
Sea; Fig. 2). For each individual, all areas visited out-
side the breeding season were identified using an
automated procedure whereby each location in the
dataset was assigned an identity based on the winter-
ing area within which it was positioned. The identity
and number of areas visited varied among individu-
als both among and within colonies. Individuals were
considered to visit an area if they spent more than 3 d
therein; if visits lasted 3 d or less, the individual was
considered to be in transit.

The following metrics of timing of migration were
extracted from the location data: for autumn migra-
tion: (1) date of departure from the vicinity of the
colony (defined as the area within the average loca-
tion error of 180 km from the colony, Phillips et al.
2004), (2) date of arrival at the post-breeding area
(defined as the area visited immediately after breed-
ing) and (3) date of arrival at the main wintering area
(defined as the area where the individual spent the
most time in winter); for spring migration: (1) date of
departure from the main wintering area and (2) date
of arrival in the vicinity of the colony. There was no
evidence that individuals used a pre-breeding area
after the spring migration equivalent to the post-
breeding area visited prior to the autumn migration
(see 'Results: Effects of breeding success and colony
location on subsequent migratory movements'). In
contrast to a previous year at the Isle of May, where
42 % of individuals undertook a pre-breeding excur-
sion to the central Atlantic (Bogdanova et al. 2011),
11 individuals from 3 colonies in this study (Rathlin,
Northern Ireland; Fair Isle, Scotland; Stéra Dimun,
Faroe Islands) undertook an excursion at this time,
representing just 9% of tracked individuals. More-
over, the destinations of these movements were closer
and more variable than those recorded for Isle of
May individuals in the previous study, so we did not
consider them further here. As movements from the
study colonies typically involved an east-west com-
ponent, the timing of migratory movements occur-

ring during the autumn or spring equinox could gen-
erally be extracted using longitude only. In the 3
colonies with the highest latitudes (>70°N; Hornoya,
mainland Norway; Grumant and Bjerneya, Svalbard
Archipelago, Norway), dates of departure from the
colony at the end of the breeding season and arrival
at the post-breeding area could not be determined as
they coincided with the summer period of constant
daylight. Furthermore, some individuals migrated
directly to the main wintering area. In addition, 1
individual from Anda (mainland Norway) and 2 indi-
viduals from Rathlin stayed in the vicinity of the
colony throughout the winter. Thus, migration met-
rics were not available for all individuals at all
colonies (sample sizes in each analysis are shown in
Table 2). For each individual, winter residency pe-
riod was the total amount of time (number of days)
spent within the main wintering area. Presence in
this area during the equinox periods could be estab-
lished from longitude.

Eifects of breeding success and colony location
on subsequent migratory movements

Effects of breeding success and colony location on
the timing of subsequent migratory movements and
winter residency period were investigated using lin-
ear mixed models (n = 108 individuals from 9 colo-
nies). Response variables were (1) date of departure
from the vicinity of the colony, (2) date of arrival at
the post-breeding area, (3) date of arrival at the main
wintering area, (4) winter residency period, (5) date
of departure from the main wintering area and (6)
date of arrival in the vicinity of the colony. Fixed
effects were breeding success in 2009, colony lati-
tude and longitude, and the random effect was
colony identity. We adopted the same approach as
Bogdanova et al. (2011) in modelling breeding suc-
cess as a binary variable (successful, i.e. raised at
least 1 chick, vs. unsuccessful, i.e. raised no chicks),
since the majority of successful kittiwakes raised 1
chick (63 % in 2009 and 76 % in 2010). Previous work
has shown differences between the sexes in carry-
over effects (Bogdanova et al. 2011, Schultner et al.
2014). However, we could not include sex in the mod-
els, as the sample size of sexed individuals was not
sufficient to simultaneously test for potential effects
of this variable and of breeding success and colony
location. However, there was no evidence that
breeding success and sex were confounded, as the
distribution of males and females among successful
and unsuccessful breeders was well-balanced (suc-
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cessful: 47 % males, 53 % females; unsuccessful: 43 %
males, 57 % females). The simplest (‘null’) model con-
tained only a random effect for ‘colony’ but no fixed
effects. The most complex (‘full') model contained
‘colony’ as a random effect, the 3 fixed effects and all
interactions. Since the study colonies are distributed
in a south-west to north-east direction, evidence for a
colony latitude by longitude interaction can be inter-
preted as an effect of colony location (Fig. 2). In con-
trast, main effects of latitude and longitude represent
north—south and east—west patterns among colonies,
respectively. We considered all possible subsets of
the variables in the full model, which led to a candi-
date set containing 19 models.

For the purposes of model comparison, models
were fitted using maximum likelihood as they had
different fixed effects but the same random structure
(Zuur et al. 2009). Support for different candidate
models was assessed using Akaike's information cri-
terion adjusted for small sample size (AICc). The
model with the lowest AICc value was considered
best supported. Models were deemed strongly sup-
ported if they differed from the best model by less
than 2 AICc units (Burnham & Anderson 2002), un-
less they were otherwise identical to the best model
but contained 1 more parameter, in which case this
rule of thumb is not appropriate (Burnham & Ander-
son 2002) and the more complex models were disre-
garded on the grounds of parsimony. The final model
was re-fitted using restricted maximum likelihood to
obtain more unbiased parameter estimates and their
standard errors (Zuur et al. 2009). Marginal coeffi-
cient of determination (R%, representing the variance
explained by the fixed effects) and conditional coeffi-
cient of determination (R%, representing the variance
explained by both fixed and random effects; Naka-
gawa & Schielzeth 2013) were calculated for the best
model in each candidate set. Analyses were per-
formed in R (R Core Team 2015; packages nlme, Pin-
heiro et al. 2016; and MuMIn, Barton 2015).

Effects of previous breeding success, timing
of migration and winter residency period on
subsequent breeding success

Effects of previous breeding success (in 2009), tim-
ing of migratory movements and winter residency pe-
riod on subsequent breeding success (in 2010) were
investigated using generalised linear mixed models
with binomial error structure (n = 113 individuals from
10 colonies). The response variable was breeding suc-
cess in 2010, the random effect was colony identity,

and potential explanatory variables were (1) breeding
success in the previous year (2009), (2) date of depar-
ture from the vicinity of the colony, (3) date of arrival
at the post-breeding area, (4) date of arrival at the
main wintering area, (5) winter residency period, (6)
date of departure from the main wintering area and
(7) date of arrival in the vicinity of the colony. Due to
varying sample sizes for the different explanatory
variables (see ‘Data processing’) and collinearity be-
tween some of the timing variables, it was not feasible
to consider all of these simultaneously within model
selection. Therefore, initial exploratory analyses were
carried out, testing separately for relationships be-
tween each of the explanatory variables and breeding
success in 2010 by comparing the model containing
the respective explanatory variable with the inter-
cept-only model. Only variables that were potentially
associated with subsequent breeding success based
on the initial analysis (whose inclusion resulted in
a lower AICc value compared to the intercept-only
model) were considered for inclusion in the full
model. The 'null’ model contained colony identity as a
random effect but no covariates. A ‘full model' was
then constructed, based upon the explanatory vari-
ables that were found to be important in the initial ex-
ploratory analyses. All subsets of the variables in this
full model were then considered, with model selection
and assessment of model goodness-of-fit carried out
as described in the analysis of effects of breeding suc-
cess on subsequent winter movements (see previous
section). Analyses were performed in R (packages
Ime4, Bates et al. 2015; and MuMIn, Barton 2015).

Winter distribution in relation to previous and
subsequent breeding success

For each colony, we examined the relationships
between breeding success in 2009 and 2010 and at-
sea distribution in the intervening non-breeding sea-
son. This involved calculating the kernel density of
locations of successful and unsuccessful breeders in
each month from the time of departure from the
vicinity of the colony in late summer, to return in the
following spring. Kernel density was calculated in
the R package adehabitatHR (Calenge 2006), with a
smoothing parameter h of 180 km, corresponding to
the average error of the location data (Phillips et al.
2004). Core areas (50 % kernel contour) were plotted
in a Lambert azimuthal equal-area projection. To
quantify variation in monthly non-breeding distribu-
tion linked to breeding success in 2009 and in 2010,
we estimated the similarity between the utilisation
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distributions of successful and unsuccessful breeders
within the core areas using Bhattacharyya's affinity
measure (Fieberg & Kochanny 2005). This measure
ranges from 0 (no overlap) to 1 (identical distribu-
tions). To test whether the observed similarity in dis-
tributions between the 2 groups of breeders deviated
from that expected by chance, we used a permuta-
tion test, where for each colony, we fixed the number
of successful and unsuccessful individuals to be the
same as in the observed data but randomised the
allocation of breeding success to individuals. The
permutation test was run for 1000 iterations and the
median, 2.5 and 97.5 percentile values for Bhatta-
charyya's affinity measure over these iterations were
extracted: observed values outside these boundaries
would indicate a significant difference from random
at a 5% significance level. Here, we were particu-
larly interested in detecting levels of similarity that
were lower than expected by chance (which would
be shown by an observed value below the 2.5 per-
centile). In both 2009 and 2010, at some colonies, all
study individuals bred successfully or unsuccessfully,
precluding a comparison of the utilisation distribu-
tions in these cases.

The study colonies formed 2 well-defined geo-
graphic clusters: UK, Faroese and Icelandic (Rathlin,
Isle of May, Fair Isle, Stéra Dimun, Hafnarhélmi) in
the south-west of the region, hereafter referred to as
SW colonies, and Norwegian (Rest, Anda, Hornoya,
Bjorneoya, Grumant) in the north-east of the region,
hereafter referred to as NE colonies (Fig. 2). The
results are presented by colony cluster to aid descrip-
tions of geographic patterns, but clusters were not
used in the analyses.

RESULTS

Eifects of breeding success and colony location
on subsequent migratory movements

Breeding success was moderately high in 2009,
with 72% of tracked individuals raising at least 1
chick. After leaving the vicinity of the colony, 33 % of
kittiwakes from the SW colonies moved to a post-
breeding area in the Denmark Strait, 25 % moved to
other areas (North Sea, Irish Sea, central Atlantic),
and 37 % travelled directly to the main wintering
area in the north-west Atlantic (Fig. 3); the remaining
5% of individuals remained in the vicinity of the
colony. In contrast, most individuals (72 %) from the
NE colonies initially moved to a post-breeding area
in the Barents Sea (Fig. 3), 12% moved to the post-
breeding area in the Denmark Strait, 9 % migrated to
other areas (Norwegian Sea, North Sea, central
Atlantic), 5% moved directly to the north-west
Atlantic and 2 % remained close to the colony.

Date of departure from the vicinity of the colony
was related to colony location (as indicated by the in-
teraction of colony latitude by longitude) and breed-
ing success (Table 2). Kittiwakes in SW colonies left
earlier than those in NE colonies and, across colonies,
unsuccessful breeders departed earlier than their
successful counterparts (Fig. 4a). There was 1 model
within 2 AICc units of the best model (excluding
those with 1 extra parameter, see 'Materials and
methods'), containing the 3 main effects (breeding
success, latitude and longitude) but no interaction
term (see Table Sla in the Supplement at www.int-
res.com/articles/suppl/m578p167_supp.pdf). Date of

40°-

0 500 1000

2000 km

-60°

Fig. 3. Core areas (50 % density ker-
L 50° nel contours) within the post-breed-
ing area (August to September; light
blue: NE colonies, single red hatch-
ing: SW colonies), and within the
main wintering area of black-legged
kittiwakes Rissa tridactyla (Decem-
- 40° ber; dark blue: NE colonies, red cross
hatching: SW colonies). NE colonies
shown with blue stars; SW colonies
shown with red stars

50° 40° 30° 20°
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'Materials and methods' for details)

Table 2. Linear mixed models testing for relationships between breeding success of black-legged kittiwakes Rissa tridactyla in 2009 (BS),
colony latitude and longitude, and timing of subsequent migratory movements or winter residency period. Only the best model for each mi-
gration metric is presented. For the full set of candidate models, their AICc values and Akaike weights see Table S1 in the Supplement at
www.int.res.com/articles/suppl/m578p167_supp.pdf. R?,: marginal coefficient of determination (representing the variance explained by
the fixed effects); R%.: conditional coefficient of determination (representing the variance explained by both fixed and random effects, see

Colony cluster

Colony cluster

Migration metric Nindi- N para- Parameter estimate (standard error) —— R%, RZ%
viduals meters BS Lat Lon BS:Lat BS:Lon Lat:Lon BS:Lat:Lon
Departure from colony area 54 6 18.11 -6.98 -41.00 0.67 0.40 0.44
(12.63) (1.88) (27.54) (0.41)
Arrival at post-breeding area 47 7 -4895.64 -88.74 52.68 81.52 -49.47 0.45 0.45
(1440.47)  (23.76) (14.78) (23.85) (14.84)
Arrival at main wintering area 84 9 -299.00 -7.11 -68.17 5.22 37.00 1.03 -0.55 0.23 0.60
(193.20) (4.05) (25.46) (3.11) (19.42) (0.38) (0.29)
Winter residency period 108 9 0.06 4.03 52.46 -0.74 -31.73 -0.82 0.49 0.20 0.51
(196.58) (4.35) (28.03)  (3.26) (21.93) (0.42) (0.33)
Departure from main wintering area 84 7 -224.71 -3.59 -30.26 3.45 0.44 0.32 0.32
(60.59) (1.13)  (5.88)  (0.92) (0.09)
Arrival in colony area 98 5 -2.36 -40.16 0.59 0.66 0.77
(0.98)  (6.08) (0.09)
. . 280 ©
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Table 3. Generalised linear mixed models testing for relationships between timing of
key migratory movements of black-legged kittiwakes Rissa tridactyla during the pre-
vious non-breeding season and breeding success in 2010 (n = 92 birds; TA: timing of
arrival in the main wintering area; TD: timing of departure from the main wintering
area). The best model is shown in bold; R?: marginal coefficient of determination
(representing the variance explained by the fixed effects); R%.: conditional coefficient
of determination (representing the variance explained by both fixed and random ef-
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viduals, whereas arrival dates of successful and un-
successful individuals from NE colonies were similar
(Fig. 4c). There were 4 models within 2 AICc units of
the best model, all of which contained colony latitude,
longitude and their interaction, suggesting a strong
effect of colony location (Table S1c).

Winter residency period in the north-west Atlantic
was also influenced by interactive effects of breeding
success and colony location (Table 2). Unsuccessful
kittiwakes from SW colonies spent longer in the main
wintering area than successful breeders, whereas
among individuals from NE colonies, the time spent
in this area was similar in the 2 groups (Fig. 4d).
There were 2 models within 2 AICc units of the best
model, both containing colony latitude, longitude
and the interaction between them (Table S1d).

Date of departure from the north-west Atlantic was
also related to an interaction between breeding suc-
cess and colony location (Table 2). Unsuccessful
breeders from SW colonies departed later than suc-
cessful individuals, whereas they tended to depart
earlier among tracked individuals from NE colonies
(Fig. 4e). Date of arrival in the vicinity of the colony at
the end of the winter was related to colony location

fects, the latter being colony identity)

only (Table 2); individuals from SW colonies returned
later than individuals from NE colonies (Fig. 4f).

Overall, the effects of breeding success and colony
location on subsequent migration strategy were
strong, but gradually weakened over the course of
the winter (evident in the R% values in Table 2), to
the point that prior breeding success was not in-
cluded in the final model explaining date of arrival in
the vicinity of the colony in the subsequent season
(Table 2).

Effects of previous breeding success, timing
of migration and winter residency period on
subsequent breeding success

Breeding success in 2010 was lower than in 2009,
with 55 % of tracked individuals successfully raising
at least 1 chick. Breeding success was most related to
colony identity (as evident from the R% and R?. val-
ues in Table 3). In addition, there was weak evidence
that unsuccessful breeders in 2010 had arrived at the
main wintering area in the NW Atlantic earlier, and
had departed later in the previous winter (Tables 3
& 4). Breeding success in 2010 was
not related to date of departure from
the vicinity of the colony, date of
arrival in the post-breeding area in
2009 or date of arrival in the vicinity
of the colony in the spring 2010, and
we found no effect of breeding suc-
cess in 2009 on breeding success in
2010 (Table S2).

Model No.of AICc AICc R?%, RZ Para- Estimate
para- weight meter + SE . Lo . . .
meters Winter distribution in relation to
previous and subsequent breeding
TA+TD+TAxTD 5 832 025 0.07 0.76 success
TAxTD -0.019 +0.021
TA 0.094 + 0.086 ) ) o
D _0.074 + 0.066 Comparison of the winter distribu-
Intercept -0.325 + 0.271 tion of individuals in relation to their
TA + TD 4 82.9 028 0.07 0.73 success in the previous breeding
TA 0.014 = 0.009 season (2009) was possible for 4 co-
D -0.013 = 0.010 lonies (Grumant, Horngya, Rest and
Intercept -0.079 = 0.052 Rathlin). At the remaining 5 colo-
TA 3 83.2 024 0.05 0.70 nies, all individuals were either
Intgrée 0.015+0.009 successful or unsuccessful. Overlap
pt -0.028 +0.028 . e N .
in utilisation distributions (based
TD 3 84.3 0.14 0.02 0.71 ' s :
™ _0.014 £ 0.011 op Bhattacharyya's affinity index;
Intercept —0.041 = 0.044 Fig. 5) of successful and unsuccess-
Intercept only 9 851 009 0.00 0.67 ful 1nd1\.71dua%s within the core areas
Intercept  0.016 + 0.010 was high in the late summer
(August) when individuals were still
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Table 4. Percentage of unsuccessful and successful black-
legged kittiwake Rissa tridactyla breeders in 2010 in rela-
tion to date of arrival at the main wintering area and to date
of departure from the main wintering area. For illustrative
purposes, the timing of movements was split into 2 cate-
gories, early and late, based on median values. However,
the statistical analysis was carried out with timing fitted as a
continuous variable (see 'Materials and methods')

Successful
in 2010 (%)

Unsuccessful
in 2010 (%)

Arrival at main wintering area

Early 68 32
Late 41 59
Departure from main wintering area

Early 48 52
Late 54 46

in the vicinity of the colony (Fig. 5). Thereafter, over-
lap was moderate to low throughout the winter, with
lower overlap generally observed during the main
migration periods (Fig. 5). Overlap was again high in
the following spring (April; Fig. 5) when kittiwakes
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had returned to the vicinity of their breeding
colonies. However, in none of the colonies did
monthly overlap in distribution of successful and
unsuccessful breeders deviate significantly from that
expected by chance (Fig. 5; observed values inside
the 2.5 and 97.5 percentile values).

Comparison of the winter distributions of individu-
als that were successful and unsuccessful in the sub-
sequent breeding season (2010) was possible for 7
colonies (Anda, Grumant, Horneya, Rest, Hafnar-
hoélmi, Isle of May and Rathlin). At the remaining 3
colonies, breeding success was the same for all study
individuals, precluding comparison between these
2 groups. Overlap in utilisation distributions of suc-
cessful and unsuccessful individuals from the NE
colonies within core areas was high in summer
(August) and the following spring (April) when the
individuals had returned to the vicinity of the colony.
Overlap was moderate in September, falling to low or
0 in the rest of the winter (October to February), with
the exception of Rest where overlap was high be-
tween November and February (Fig. 6d). A similar
pattern to that in the NE colonies was observed in 1
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Fig. 5. Similarity in distribution of successful and unsuccessful black-legged kittiwake Rissa tridactyla breeders in 2009 from

(a) Grumant, (b) Horneya, (c) Rest and (d) Rathlin within the core areas used (50 % kernel contours) in the subsequent winter.

Similarity was assessed using Bhattacharyya's affinity measure (Fieberg & Kochanny 2005): shown are observed values (filled

circles) and median (solid line), 2.5 and 97.5 percentiles (dashed lines) from randomised permutation (see ‘Materials and
methods’ for details)
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of the SW colonies (Rathlin, Fig. 6g). In the remaining
2 SW colonies (Hafnarhélmi, Fig. 6e; Isle of May,
Fig. 6f), overlap in utilisation distributions of success-
ful and unsuccessful individuals was high in the sum-
mer and following spring, moderate in mid-winter
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and low to moderate during migration (September to
October and February; Fig. 6). Monthly overlap in
distribution of the 2 groups of breeders did not de-
viate significantly from that expected by chance for
any of the colonies, although the observed values
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Fig. 6. As in Fig. 5, but for the similarity in distribution of

successful and unsuccessful black-legged kittiwakes Rissa

tridactyla breeders in 2010 from (a) Anda, (b) Grumant, (c)

Horneya, (d) Rest, (e) Hafnarho6lmi, (f) Isle of May and (g)

Rathlin within the core areas used (50 % kernel contours) in
the previous winter
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(particularly for NE colonies) fell close to or at the 2.5
percentile of the permutation distribution during
much of the winter (Fig. 6).

DISCUSSION

To our knowledge, this study is the first to test for
individual carry-over effects across more than 2 sea-
sons in multiple populations. We found strong evi-
dence of spatio-temporal variation in the strength of
carry-over effects between breeding success and
winter migration. Effects of breeding success on mig-
ratory movements weakened over the course of the
winter, and by the time individuals arrived back at
the colony the following year, differences between
previously successful and unsuccessful individuals
had disappeared. Furthermore, these links between
breeding success and subsequent winter migration
patterns were only apparent at colonies in the south-
west of the study region; no effect was discernible in
kittiwakes at Norwegian colonies. In contrast, effects
of winter migration on subsequent breeding success
were much weaker, and there was no evidence of
any association with breeding success in the previous
year; instead, breeding success was predominantly
associated with colony identity. Winter distribution
was not associated with breeding success in the pre-
vious or following summer, suggesting that seasonal
interactions were most strongly linked to timing of
migration, rather than winter destination. Our results
suggest that the strength of carry-over effects shows
considerable structure across space and time, with
potentially important consequences for meta-popula-
tion dynamics.

We found partial support for our first hypothesis,
that there would be an overall relationship between
breeding success and scheduling and location of
migration. Thus, unsuccessful individuals departed
the colony earlier and, for some colonies, reached
their winter destination sooner and spent longer at
those destinations, in line with previous findings
(Summers et al. 1996, Phillips et al. 2005, 2007, Bog-
danova et al. 2011). However, our study contrasted
with previous work on 1 study population (on the Isle
of May), which found a relationship between breed-
ing success and subsequent winter destination, with
unsuccessful individuals typically migrating to the
NW Atlantic and successful individuals to the north-
east Atlantic or North Sea (Bogdanova et al. 2011).
However, in the present study, which was based on
data collected 2 yr later, there was no evidence of
spatial segregation, and the majority of successful

and unsuccessful individuals wintered in the north-
west Atlantic. Such contrasting downstream conse-
quences of breeding outcome among years at the
same colony may be linked to differences in prevail-
ing conditions, such that carry-over effects are
stronger when conditions are less favourable (Legag-
neux et al. 2012, Harrison et al. 2013). Thus, condi-
tions may have been poorer in the season preceding
the winter when there were effects on destination. In
support of this, breeding success was significantly
lower on the Isle of May than in the season before
effects were apparent on migration schedules (0.24
vs. 1.36 chicks fledged per pair).

We found support for our second hypothesis, that
there would be spatial variation in the strength of
carry-over effects among colonies. We found marked
spatial variation in the links between breeding suc-
cess and winter migration, such that, with the excep-
tion of timing of colony departure, positive associa-
tions were only found in individuals from SW
colonies. Most individuals from both colony clusters
spent time in a post-breeding area before migrating
to their main wintering area. Individuals from the NE
colonies moved to the Barents Sea, a highly produc-
tive area close to their colonies (Jakobsen & Ozhigin
2011). They remained there until late autumn when
constant darkness and ice cover may have made con-
ditions unfavourable for foraging. In contrast, many
individuals from SW colonies moved to the North Sea
or Denmark Strait, which are also known to be highly
productive in late summer (Paramor et al. 2009, Pals-
son et al. 2012), departing for their main wintering
area before kittiwakes from NE colonies. Breeding
success may have a differing effect on migration
schedules in different regions because of variation in
prevailing environmental conditions. Oceanographic
features such as sea temperature anomalies and pri-
mary productivity are important drivers of prey dis-
tribution and abundance and are therefore key char-
acteristics of the foraging habitats of marine top
predators, including seabirds (e.g. Block et al. 2011).
If foraging conditions in the Barents Sea are more
favourable than in other regions, any difference be-
tween successful and unsuccessful individuals may
disappear. Conditions at SW colonies may be less
favourable since they lie closer to the edge of the
species’' range. These regional differences could op-
erate via a similar mechanism whereby environ-
mental conditions determine interannual variation in
strength of carry-over effects in single populations
(Legagneux et al. 2012, Harrison et al. 2013). This
assertion is supported by the substantially later
migration from the post-breeding area of individuals
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from NE colonies, and the lower proportion of the
population that migrated directly to the main winter-
ing area compared with SW colonies.

The effect of breeding success on migration in SW
colonies weakened over the course of the winter in
this study, and this pattern was also apparent in pre-
vious results from the Isle of May (Bogdanova et al.
2011). Furthermore, there was only limited evidence
of an effect of timing of migration on subsequent
breeding success, and no evidence that these effects
varied across the region. Moreover, there was no evi-
dence that breeding success in the second year was
related to success in the previous year. Instead, there
was a strong effect of colony identity on breeding
success, suggesting that productivity was sensitive to
prevailing, local conditions, in line with many previ-
ous studies (Clutton-Brock 1988, Newton 1989), and
these may potentially have overridden any carry-
over effects from the previous winter.

Establishing whether seasonal interactions result
from genuine carry-over effects, whereby events or
processes in one season have causal effects on sub-
sequent seasons, or cross-seasonal correlations due
to stable within-individual performance, is challeng-
ing. Powerful approaches exist, in particular manipu-
lative experiments (Studds & Marra 2005, Legagneux
et al. 2012, Catry et al. 2013, Schultner et al. 2014) or
long-term longitudinal measurements whereby indi-
viduals act as their own controls (Daunt et al. 2014).
Our approach to investigating the temporal structure
in the strength of carry-over effects at multiple col-
onies provides an additional method of distinguish-
ing between genuine carry-over effects and cross-
seasonal correlations (our third hypothesis). The
weakening of seasonal interactions over time found
consistently across multiple colonies indicates that
genuine carry-over effects were likely operating
between summer and winter in kittiwakes in the
North Atlantic (Hypothesis 3a). Had we found a sus-
tained strength of seasonal interaction across the full
annual cycle, a more likely explanation would have
been consistent performance within individuals asso-
ciated with intrinsic ability (Hypothesis 3b). Within-
individual consistency coupled with among-individual
variation could result from effects of age and experi-
ence on breeding success and winter migration.
Although our data provide support for true carry-
over effects, we cannot discount the possibility that
intrinsic effects also partially underpinned the links
between breeding success and subsequent migratory
movements (Daunt et al. 2006, 2014).

Our analysis only included individuals that made a
breeding attempt in 2010 and thus excluded any

individuals skipping breeding in that year. This
restriction could be important since skipped breed-
ing may not be evenly distributed across groups
(Cam et al. 1998) and not including this effect could
therefore lead to a bias in the results. However, there
was no clear indication of significant non-breeding,
i.e. individuals holding sites but not breeding, which
is what generally happens in this species (as opposed
to individuals being completely absent from the
colony for the breeding season; Harris & Wanless
1997). Other potential sampling issues that could
have biased our results include cases where individ-
uals were not recaptured in 2010 because they had
re-located to inaccessible parts of the study colonies,
since breeding dispersal is known to occur in this
species, typically associated with breeding failure
(Boulinier et al. 2008, Ponchon et al. 2015). However,
at the colonies, researchers carried out searches for
individuals carrying loggers well outside the location
where deployments took place. In addition, site fide-
lity was high at all colonies and thus few breeding
attempts resulting from re-location are likely to have
been missed. The study was also unable to quantify
rates of partner change between 2009 and 2010,
a potentially important determinant of change in
breeding success (Black 1996). Incorporating partner
change might have helped explain some of the varia-
tion in breeding success in 2010 and therefore im-
proved our ability to detect carry-over effects.
Quantifying the strength of downstream fitness ef-
fects arising from seasonal interactions is a crucial
goal in population ecology. There is now strong evi-
dence that carry-over effects are widespread in
nature, but what is less clear is the extent to which
they vary temporally and spatially. Our study pro-
vides evidence for a decay in strength over time and
marked spatial variation in seasonal interactions, and
also indicates that the effects of breeding success on
subsequent winter migration are much stronger than
the effects of migration on subsequent breeding.
These complex dynamics are likely to have important
consequences for range-wide population dynamics,
since carry-over effects have the potential to explain
a considerable amount of variation in individual fit-
ness (Norris & Marra 2007, Harrison et al. 2011). The
precise spatio-temporal structure of these links will
determine which seasonal conditions are most impor-
tant and which demographic rates and regions are
most affected. If the patterns recorded here are con-
sistent across years, the population dynamic conse-
quences of carry-over effects are likely to occur
primarily in the south-western part of the range,
mediated by conditions during the breeding season
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affecting over-winter survival probability. Associated
geographic variation in population trajectories could,
ultimately, lead to species range shifts. To achieve a
comprehensive understanding of these fitness conse-
quences, an important future priority is therefore to
investigate to what extent the spatial variation in sea-
sonal interactions recorded in this study is consistent
across years. An additional priority for future re-
search is to quantify spatio-temporal variation in
carry-over effects on demographic rates that we
could not consider here, notably survival, breeding
propensity and dispersal (Boulinier et al. 2008, Rei-
ertsen et al. 2014). Furthermore, given their potential
to drive both temporal and spatial variation in the
strength of carry-over effects, investigating the role
of environmental conditions should be a key consid-
eration for future studies.
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ABSTRACT: Similarity or dissimilarity between 2 individuals that have formed a pair to breed can
occur in morphology, behaviour and diet. Such patterns influence partners’' cooperation when
rearing their offspring, consequently influencing reproductive success. They may confer different
benefits, depending on species and contexts. However, the extent to which breeding partners are
more similar in morphology, behaviour, and diet is poorly documented. Furthermore, the relation-
ship between behavioural consistency and mate choice is particularly poorly understood. To
investigate these issues, Kerguelen shags Phalacrocorax verrucosus, which are monogamous with
high mate fidelity across years, were studied. Partners were equipped with GPS and diving
behaviour loggers. Feather and blood samples were analysed for stable isotopes (83C, a proxy of
foraging habitat, and 8!°N, a proxy of diet/trophic position). Generalized linear mixed effects mod-
els and permutation tests were used to investigate pair similarity in morphology, foraging behav-
iour, behavioural consistency, overlap in foraging areas, and diets/foraging habitats. Mates were
found not to exhibit size-assortative mating, but were more similar in foraging behaviour. They
did not show assortative or disassortative mating based on foraging behavioural consistency. Fur-
thermore, they followed more similar bearings and overlapped more in foraging areas. In accor-
dance with this, partners were more similar in §!°N. Given the lack of assortative mating by mor-
phology, the similarity in behaviour could be due to individuals selecting mates with similar
foraging abilities, linked with individual quality, and/or subsequently using information gained
from their partners' foraging strategies (e.g. local enhancement). This could help breeding pairs
increase their foraging efficiency and reproductive success.

KEY WORDS: Pair similarity - Mate choice - Kerguelen shags - Spatial use - Diving behaviour -
Diet - Stable isotopes

INTRODUCTION

Similarity in behavioural traits within breeding pairs
can have important, long-lasting effects on repro-
ductive success and fitness in species with biparental
care, probably because of reduced sexual conflict

*Corresponding author: elodie.camprasse@gmail.com

over the provision of parental investment associated
with choosing a partner with compatible provision-
ing rules (Schuett et al. 2011). This allows mates to
enhance their cooperation and coordination in the
provision of care, essential in species with biparental
care and associated with improved reproductive per-
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formance, including offspring growth and survival
(Spoon et al. 2006, Schuett et al. 2010, 2011, Rangas-
samy et al. 2015). Disassortative mating with respect
to the partners’ recognition cues may, however, lead
to reduced inbreeding (Holman et al. 2013). In terms
of personality, disassortative mating can lead to the
production of offspring of intermediate personality,
associated with lower variance in survival in the
long-term and higher life expectancy (Dingemanse et
al. 2004, Schuett et al. 2010). Risk partitioning may
increase the fitness of both partners; while one par-
ent could adopt a risk-averse strategy to provide
enough food to ensure that the chicks reach fledging,
the other partner might provide the extra bulk
for improved post-fledging survival through a risk-
prone strategy (Elliott et al. 2010). In contrast, combi-
nations of dissimilar behavioural traits within pairs
could result in unstable and disharmonious condi-
tions, generating high stress levels that have the
potential to negatively influence reproduction (Von
Holst 1998, Rangassamy et al. 2015). In general,
the extent of mate similarity in behaviour is poorly
investigated (Schuett et al. 2010).

Empirical evidence suggests that mate similarity
or dissimilarity confer different advantages and are
selected for in different species or environmental con-
ditions in a non-mutually exclusive way (Dingemanse
et al. 2004, Schuett et al. 2010). In the dumpling squid
Euprymna tasmanica, mates showing similar levels of
boldness had higher probabilities of reproducing suc-
cessfully, which might result from either behavioural
mate preference or genetic compatibility between
partners (Sinn et al. 2006). Similarly, in some bird spe-
cies, highly behaviourally compatible pair members
had higher reproductive success potentially as a re-
sult of better cooperation of individuals of similar be-
havioural traits (Both et al. 2005, Spoon et al. 2006). In
contrast, thick-billed murre Uria lomvia pairs exhib-
ited a higher reproductive success when they were
constituted of one risk-averse and one risk-prone
partner (Elliott et al. 2010). Similarly, in animals with
distinct foraging territories such as raptors, overall
feeding rates become higher when mates adopt dif-
ferent foraging strategies (Andersson & Norberg 1981).

Behavioural consistency could also be used to
assess the quality of potential mates, and, therefore,
influence mate choice (Byers 2007, Botero et al. 2009,
de Kort et al. 2009). Consistency in behaviour can
signal predictability and, as such, can provide bene-
fits to partners in many aspects of their social life
(Schuett et al. 2010). Consistency could also be an
indicator of quality and it has been suggested that
consistency could be generated by sexual selection if

individuals tend to preferentially choose mates that
are consistent or individuals outperform competitors
when they are consistent (Dall et al. 2004). Assorta-
tive mating in terms of behavioural consistency could
be important to enhance behavioural coordination
within breeding pairs, leading to increased repro-
ductive success (Spoon et al. 2006). In contrast, in
cases in which pairs constituted of a risk-prone and a
risk-averse mate have a better reproductive success,
disassortative mating by behavioural consistency
might be preferable; risk-prone individuals might in-
deed be more inclined to explore new environments
(Dingemanse et al. 2003, Bremner-Harrison et al.
2004), and therefore exhibit lower behavioural con-
sistency, compared to their risk-averse mates. Data
on assortment in terms of behavioural consistency is
lacking, but studies in zebra finches Taeniopygia
guttata suggest that pairs comprised of partners that
differ in behavioural consistency raise offspring in
poorer condition (Schuett et al. 2010, 2011).

Mate similarity or dissimilarity can also be influ-
enced by sexual dimorphism and size-assortative
mating. Sexual size dimorphism is widespread in
animal taxa, and species exhibiting dimorphism are
known to exhibit differences in behaviour and diet
(Andersson & Norberg 1981, Camilleri & Shine 1990,
Magurran & Garcia 2000, Marcelli et al. 2003, Isaac
2005, Weimerskirch et al. 2006). For example, male
and female European polecats Mustela putorius for-
age at different times of the day (Marcelli et al. 2003)
and some snake species exhibit dimorphism leading
to dietary divergence between males and females
(Camilleri & Shine 1990). Hence, sexual dimorphism
would be expected to influence mate similarity and
lead to a higher mate dissimilarity in behaviour
and/or diet within dimorphic species (Andersson &
Norberg 1981, Elliott et al. 2010) in comparison to
monomorphic species. However, when size-assorta-
tive mating occurs, such dissimilarity is likely to be
reduced as mates are then more similar in morphol-
ogy and, therefore, expected to be more similar in
behaviour as well in comparison to non-mated indi-
viduals. The interplay between dimorphism, size-
assortative mating, and mate similarity in behaviour
and diet has rarely been investigated.

Seabirds are generally socially monogamous, ex-
hibit biparental care, and show high mate fidelity
(Bried & Jouventin 2002). As such, seabird partners
establish specific foraging strategies in order to en-
hance their reproductive success through, for exam-
ple, better coordination of provisioning behaviour
(Davis 1988, Shoji et al. 2011, Thiebot et al. 2015).
Despite the potentially long-lasting and important
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consequences of pair similarity on reproductive suc-
cess, only 2 studies, to the best of our knowledge,
have focused on identifying pair similarity in the diet
and behaviour of seabirds. They showed that part-
ners do not necessarily display similar food prefer-
ences (Harris et al. 2016), and that similarity in
partners’ diets can lead to a decline in chick growth
rates and fledglings produced (Watanuki 1992). To
fill these knowledge gaps, testing the pair similarity
in key traits affecting offspring provisioning and con-
dition, such as in foraging metrics and behavioural
consistency during the breeding season, is needed,
particularly in dimorphic species in which males and
females are expected to differ in behaviour and diet.

Kerguelen shags Phalacrocorax verrucosus are suit-
able for investigations of relationships in the behav-
iour, consistency in foraging and diet of partners
within a breeding pair. Individuals exhibit strong spe-
cialisation in such traits that can be maintained over
the long-term, regardless of their sex, and therefore
could be used by individuals to evaluate the quality of
potential mates (Bearhop et al. 2006, Cook et al. 2006,
Camprasse et al. 2017a). They are long-lived, resident,
and benthic foraging seabirds, and individuals repeti-
tively exploit the same foraging areas (Camprasse et
al. 2017a). In addition, both parents often exhibit high
nest fidelity, mate retention, and share incubation and
chick-rearing duties (Aebischer et al. 1995, Sapoz-
nikow & Quintana 2008, C. A. Bost pers. obs.). Ker-
guelen shags exhibit sexual dimorphism, with males
being larger and heavier than females, as well as spe-
cialisations in feeding times, with females foraging in
the morning and males foraging in the afternoon
(Cook et al. 2013); these patterns might be expected
to lead to mates exhibiting differences in behaviour,
which makes Kerguelen shags interesting models to
investigate the interplay between sexual dimorphism,
size-assortative mating, and pair similarity.

In the present study, the similarity in foraging be-
haviour and morphology within pairs of Kerguelen
shags was examined through the use of morpho-
metric measurements and the combination of stable
isotope dietary analysis and bio-logging techniques.
Our aim was to determine whether (1) individuals
exhibit size-assortative or -disassortative mating; (2)
the foraging behaviour of partners was more or less
similar compared to non-mated birds; (3) the consis-
tency in foraging behaviour of partners was more or
less similar compared to non-mated birds; (4) part-
ners overlapped more or less than non-mated birds in
foraging locations; and (5) partners exhibited more
similar or dissimilar diets/foraging habitats com-
pared to non-mated birds.

MATERIALS AND METHODS
Instrumentation

Field work was conducted at Pointe Suzanne
(49°26'S, 70°26'E), Kerguelen Island, southern Indian
Ocean, during the 2014/2015 breeding season. Sam-
pling occurred during 2 sessions. First, a total of
20 Kerguelen shag Phalacrocorax verrucosus indi-
viduals (both partners from 10 nests) were equipped
with GPS data loggers (I-gotU GT120, Mobile Action;
44.5 % 28.5 x 13 mm, 12 g in air corresponding to ca.
0.5 % of mean body mass) for 3 to 6 d at the end of the
incubation/early chick-rearing period (26 November
to 10 December, hereafter ‘incubation/early chick-
rearing'), when chicks were no older than 1 wk. Dur-
ing this session, nest checks every 2 or 3 d allowed us
to determine the age of the chicks. Second, a total of
22 birds (both partners from 11 nests, including 6
new nests and 5 nests used during the first deploy-
ment session) were equipped for 3 to 12 d during the
late chick-rearing period (6 to 18 January, hereafter
‘late chick-rearing’'), of which the 10 previously sam-
pled birds were deployed with GPS data loggers
while the remaining 12 individuals were equipped
both with GPS data loggers and time-depth recorders
(TDRs, LAT1800S, Lotek Wireless; 36 x 11 X 7.2 mm,
4.8 g in air corresponding to ca. 0.2% of mean body
mass). During this second session, chicks were ca. 30
to 40 d old, except for one pair that had a chick ca. 10
to 15 d old. Monitoring of the nests could not be con-
ducted at all times but a high proportion of observed
change-overs (75.8 %) occurred after females came
back from their morning trips, after which they
tended to stay at the colony for the day (E. C. M.
Camprasse pers. obs.), and therefore chicks were still
in the presence of a parent most of the time. All but
one brood had a single chick at deployment. This
unique brood, however, lost their second chick
immediately after deployment. While no quantitative
data was collected on the rest of the population, this
low number of chicks per brood was a general pat-
tern within the colony compared to the maximum of
3 chicks that Kerguelen shag pairs can raise during a
single breeding season. In conjunction with poor
breeding success in sympatrically breeding Gentoo
penguins at the time of the study, such a pattern
seems indicative of unfavourable environmental con-
ditions (Camprasse et al. 2017b, this Theme Section).

Individuals were captured at the colony using a
noose attached to a fishing pole, weighed in a cloth
bag using a suspension scale (+25 g, Pesola), and
banded with an individually numbered coloured
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plastic ring on one leg and an individually numbered
metal ring on the other leg for identification. The data
loggers, encased in heat-shrink plastic for water-
proofing, were attached to the back feathers using
waterproof tape (Tesa 4651) and cyanoacrylate glue
(Loctite 401). Handling times ranged from 15 to
20 min during which the bird's head was covered
with a hood to reduce stress. Females tended to forage
in the morning while males foraged mostly during
the afternoon (Cook et al. 2013). Whenever possible,
we took advantage of this difference in schedule to
deploy data loggers before the birds left the colony.

Individuals were gently recaptured 3 to 18 d later
as previously described. The data loggers were re-
moved, individuals were weighed again, and morpho-
metric measurements (bill length, bill width, head
length, wing length, and tarsus length) were taken
using a vernier caliper (+0.05 mm), or ruler (+1 mm)
(except for one bird for which we obtained mass but
not morphometric measurements). In addition, 3 to 6
dorsal dark contour feathers were plucked and a
blood sample (0.5 to 1.5 ml) was collected by
venipuncture of a tarsal vein.

GPS loggers were programmed to sample position
at 1 min intervals during incubation/early chick-
rearing and at 2 min intervals during the chick-
rearing period. The TDR units were set to record
depth at 1 s intervals.

GPS data were obtained for only 17 of the 20 indi-
viduals equipped during the first round of deploy-
ments due to logger failure, resulting in 7 pairs with
spatial data for both partners at this stage. During the
second deployment session, spatial data were ob-
tained for 21 out of 22 individuals, and thus 10 pairs
had complete data for both members. Of these 10
pairs, 6 pairs were from new nests and 4 pairs were
from those that were deployed with loggers during
incubation; of these 4, 2 had complete data from the
first deployment session. This resulted in a total num-
ber of 15 different pairs with data on both members.
For 13 of those pairs, both members had data on more
than one trip and could be used to evaluate consis-
tency in spatial use.

Isotopic analyses

The measurement of ratios of stable isotopes of car-
bon (}3C/!'2C) and nitrogen (*N/!*N) is a powerful
tool to investigate the food and feeding ecology of
consumers (Cherel et al. 2005a). More specifically,
813C and 8'°N values of seabirds are considered to be
proxies of their foraging habitats and diets/trophic

position, respectively (Cherel & Hobson 2007). Over-
all, 8!3C values decrease along a latitudinal gradient
(Cherel & Hobson 2007, Jaeger et al. 2010) and
815N values increase with trophic level (Cherel et al.
2010). 8°C enrichment also occurs for inshore or
benthic species as opposed to offshore or pelagic
ones (Hobson et al. 1994). Isotopic values (details in
Cherel et al. 2008) were measured on whole blood
(hereafter 'blood’) and contour feathers (hereafter
‘feathers’) of the studied shags. The rationale is that
the 2 complementary tissues integrate different peri-
ods of information. Blood is a metabolically active
tissue that covers a period of weeks before sampling,
whereas feathers, a metabolically inert tissue, reflect
the foraging ecology at the time they were grown.
In other species from the blue-eyed shag complex,
such as the Antarctic shag P. bransfieldensis, contour
feathers are replaced in March, immediately after
breeding (Bernstein & Maxson 1981). Here, blood
and feathers collected during the breeding period
reflect the breeding period itself and the previous
post-breeding moulting period that took place almost
1 yr before the study, respectively.

In the laboratory, blood samples were freeze-dried
and powdered. Lipid extraction was not necessary as
the C:N mass ratio was <3.5 for all blood samples
(Cherel et al. 2005b). A single contour feather per
bird was cleaned of surface lipids and contaminants
using a 2:1 chloroform:methanol bath, air-dried, and
cut into small pieces. Nitrogen and carbon isotopic
ratios were measured with a continuous flow-isotope
ratio mass spectrometer (Thermo Scientific Delta V
Advantage) coupled to an elemental analyser (Thermo
Scientific Flash EA 1112). Results are presented in the
usual & notation relative to Vienna PeeDee Belemnite
for carbon and atmospheric N, for nitrogen. Replicate
measurements of internal laboratory standards (ac-
etanilide and peptone) indicated measurement errors
<0.15 %o for both 8'3C and §!°N. Isotopic values were
obtained for both members of 15 pairs.

Data processing

All data processing and analyses were conducted
in the R Statistical Environment, version 3.2 (R Core
Team 2015). GPS records were visually inspected
and individual trips were determined. The diveMove
package (Luque 2007) was used to apply a speed fil-
ter on the GPS data to remove erroneous locations
and obtain summaries of diving metrics from TDR
records (only dives >1 m were considered in analy-
ses). As dive depths (i.e. depths at the deepest part of
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a dive) were not normally distributed within individ-
uals, the mode of dive depths instead of the mean
was recorded for each trip. The means of dive dura-
tions and the sum of vertical distance travelled per
trip were also calculated. These values were used to
calculate a mean of means (or mean of modes) and
coefficients of variation (CVs) across foraging trips
for each individual. The packages trip (Sumner 2013)
and sp (Pebesma & Bivand 2015) were used to obtain
foraging metrics for each trip (bearings, total dis-
tances travelled, maximum distances and trip dura-
tions). Bearing for each trip was calculated as the
angle between the colony and the most distal point of
the tracks and standard deviation in bearing was
calculated for each individual using the circular
package (Lund & Agostinelli 2011). Means and CVs
for all metrics were obtained per individual and per
stage, except bearings, for which SD was calculated.

Kernel home ranges for each trip of each individual
were determined in the adehabitatHR package (Ca-
lenge 2006). Because Kerguelen shags tend to fly to
their foraging grounds and dive predominantly at the
most distal part of their trip (Camprasse et al. 2017a),
and because we wanted to know whether sexes or
partners forage in the same locations, only core for-
aging area (50 % home range) was calculated. Each
trip for each male within each breeding stage was
compared to each trip for each female sampled
within the same stage by calculating the overlap in
core foraging area between these 2 trips with the
‘kerneloverlap’ function in the adehabitatHR pack-
age using the Bhattacharyya's affinity (Fieberg &
Kochanny 2005).

An index of spatial use consistency was calculated
for each individual within each stage. For each pair
of trips within a deployment, a kernel overlap was
calculated (e.g. for a bird with 3 trips, 3 overlap val-
ues were obtained, between Trip 1 and Trip 2, Trip 2
and Trip 3 and Trip 1 and Trip 3), as described above
for the overlap between males and females. The
average of these numbers was obtained and used as
an index of consistency for each individual within
each stage.

Data analyses

Linear mixed effects models were used to confirm
sexual dimorphism in mass in study birds, as mass
data was obtained both at incubation/early chick-
rearing and in late chick-rearing for some birds, and
always both at deployment and retrieval. Dimor-
phism in size was checked using only 1 of the mor-

phometrics obtained (tarsus length, as the other ones
were correlated using a linear regression) as single
measurements were obtained. When looking at pair
similarity, 2 kinds of analyses were run depending on
the structure of the data: when a single observation
per individual was available, permutation tests were
run, and when multiple observations were available
(i.e. one observation per trip on multiple consecutive
trips), generalized linear mixed models (GLMMs)
with crossed random effects were used. p-values
<0.05 were considered significant for all tests. Specif-
ically, a significant p-value for the permutation tests
or binomial GLMM meant that partners were more
similar or dissimilar than expected by chance and
summarizing the data for 'true pairs’ and 'false pairs’
gave the direction of the effect.

To investigate any potential correlations in mor-
phology in partners, a principal component analysis
(PCA) was run on masses at deployment and re-
trieval and on the 5 body measurements. The Euclid-
ean distances for all possible combinations of males
and females were calculated from the scores ob-
tained thanks to the PCA for each individual. Euclid-
ean distances were used as a way to examine the
pattern of similarities in the body size and mass of
individuals in the sample (Wojczulanis-Jakubas et al.
2011). Permutation tests were carried out in the per-
mute package (Simpson 2014) on the matrix contain-
ing the Euclidean distances and whether they came
from actual paired individuals (value of 1) or not
(value of 0) with the null hypothesis being that part-
ners were not more similar than expected by chance.
Permutation tests (10 000 iterations) randomly assigned
each Euclidean distance to a type of pairing. Permu-
tational p-values were used and they are defined as
the proportion of randomized values as extreme or
more extreme than the observed value (Manly 1991).

The 3 dive-level variables that we extracted from
the TDR data (dive duration, maximum depth, and
vertical distance) were correlated, so we only consid-
ered maximum depth in the analysis (maximum
depths and trip duration: Spearman'’s rho = 0.93, p <
0.0001, maximum depths and sums of vertical dis-
tances: Spearman's rho = 0.36, p = 0.05). Maximum
depths were used in modelling as representative
of habitat selection in the vertical dimension. The
absolute values of the differences in maximum depth
between males and females were used to investigate
the similarity or dissimilarity between paired females
and males within the chick-rearing stage, because
we were not specifically interested in which sex had
the higher value, but just in the distance between
them. We estimated the probability of pairs constitut-



188 Mar Ecol Prog Ser 578: 183-196, 2017

ing true pairs using logistic regression in a generalized
linear mixed-effects modelling framework (‘glmer’
in the Ime4 package (Bates et al. 2011), with a bino-
mial distribution and logit link). Best models were
selected based on their Akaike information criteria.
For the diving behaviour model, differences between
males and females in maximum dive depths were
used as explanatory variables, while the individual
bird ID was used as a crossed random effect with
males crossed with females of each possible pair
(with 1 being the 'true pair’ and 0 being a 'false pair’).
Total distance travelled, maximum distance and trip
duration were highly correlated (total distance and
trip duration: Spearman'’s rho = 0.60, p < 0.0001, total
distance and maximum distance: Spearman's rho =
0.96, p < 0.0001). Therefore, only total distance trav-
elled was included in the analysis of pair similarity or
dissimilarity in spatial use. As such, to investigate
whether partners exhibited a similar spatial use, a
model similar to the one described above included
the absolute values of the differences in total dis-
tances between males and females for each possible
pair and for each stage. In the final model, these
differences, stage and their interaction were used as
explanatory variables.

To determine if partners were more similar or dis-
similar than non-mated birds in consistency, classical
multidimensional scaling was applied and the Eucli-
dean distances for all possible combinations of males
and females were calculated separately for each
stage. Pairing was indicated (with 1 being ‘true pair’
and 0 being 'false pair'). Permutation tests were per-
formed and permutational p-values were obtained,
as described above, for dive behaviour consistency
and spatial use consistency, respectively. For the for-
mer, Euclidean distances were calculated from the co-
efficients of variation in maximum depth, dive dura-
tion and sum of vertical distance travelled; in this case,
all 3 variables were used as their coefficients of varia-
tion were not correlated. For the latter, the variables
included in the calculation of the Euclidean distances
were the following, uncorrelated mea-
sures of consistency: index of spatial
use consistency, standard deviations
in bearing, and coefficients of varia-

pairs constituting true pairs was analysed by logistic
regression using a generalized linear mixed-effects
model (GLMM with a binomial distribution and logit
link). The absolute values of the differences between
bearings in true and randomised pairs, and the over-
lap values between males' and females' trips, stage,
and their interaction were used as explanatory vari-
ables in 2 different models, while individual bird ID
was used as a crossed random effect with males
crossed with females of each possible pairing.

To investigate whether partners had a more similar
or dissimilar diet/trophic level compared to non-
mated birds, the Euclidean distances for all possible
combinations of males and females were calculated,
separately for each stage, either for 83C and 8§'°N
values combined, for 8'3C values only, or for §'°N val-
ues only, in blood and feathers. Permutation tests
were carried out on the matrices containing the
Euclidean distances and whether they came from
actual paired individuals.

RESULTS

Equipped Kerguelen shags Phalacrocorax ver-
rucosus were sexually dimorphic (Table 1). Overall,
males were (mean + SD) 0.29 + 0.06 kg heavier
(t30 = 4.60, p < 0.001) and had tarsus lengths 2.60 +
0.65 mm (f9 = 3.97, p < 0.001) greater than females.
Partners were not more similar or dissimilar to
each other in morphological traits and body mass
than expected by chance. Indeed, permutation tests
indicated no significant differences between paired
individuals and the rest of the individuals sampled
(permutational p = 0.18).

Diving data were obtained for all 12 birds equipped
with TDR during late chick-rearing. Males tended
to dive deeper and be more variable in dive depths
than females (Fig. 1, Table S1 in the Supplement at
www.int-res.com/articles/suppl/m578p183_supp.pdf)
as shown in Camprasse et al. (2017a). The difference

Table 1. Morphometric measurements (mean + SD; min.—max.) of all Kerguelen
shags equipped at the Pointe Suzanne colony, Kerguelen Islands

tion in trip duration, total and maxi-

Measurement

Females (n = 14) Males (n = 15)

mum distances.

To examine whether partners of
the same nest overlapped more or
less than birds from different nests, 2
tests were run: one with bearings
and one with the kernel overlap val-
ues. In both cases, the probability of

Body mass (kg)
Head length (mm)
Tarsus length (mm)
Beak width (mm)
Culmen length (mm)
Wing length (mm)

2.1+0.2(1.9-2.6)
132.1 £ 6.9 (124.5-149.0)
63.6 £ 1.5 (60.9-66.2)

( 2.4+0.2(2.0-2.8)
(
(
13.2+ 1.4 (11.9-16.9)
(
(

(

133.6 £ 4.4 (125.5-142.0)
66.1 +£2.9 (61.4-69.2)
14.0 + 1.0 (12.7-15.7)
52.4 + 3.8 (40.9-56.6)

278.9 £ 27.9 (183.0-295.0)

50.3 £ 1.7 (47.3-52.6)
272.0 + 7.4 (252.0-282.0)
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Table 2. Summary of trip metrics for Kerguelen shags instrumented at the Pointe Suzanne
colony, Kerguelen Islands, separated by sex and breeding stage. Data are mean + SD

in maximum depth between
mates was lower than for non-
mated birds (binomial GLMM:
x? = 68.34, df = 1, p < 0.0001);
on average mates differed in
depths by 17.1 + 0.9 m, as op-
posed to 27.6 + 0.5 m in non-

Males ——
Incubation Chick-rearing
(n =7 48 trips) (n=11, 90 trips)

Females
Incubation Chick-rearing
(n =8, 35 trips) (n =10, 61 trips)

Parameter

mated birds. Males and fe- Trip duration (h) 59+1.8 6.1 +3.1 54+29 51+2.6
males did not differ in trip Max1m}1m distance (km) 10.2 +6.5 9.0 +6.7 9.5+8.0 11.1+£5.5

. includi I Total distance (km) 26.6 + 14.0 227+ 152 25.0 +£19.5 29.6 + 20.3
metrics, including trip dura- Bearing (°) 47.6+0.15  60.8 +0.36 75.4 + 0.44 55.9 + 0.26
tions, maximum distances, total Index of consistency 0.6 +0.13 0.5+0.18 0.4 +0.20 0.5+0.16

distances, and bearings (Ta-

bles 2 & S2). Partners were

more similar in spatial use than expected by chance.
Indeed, the differences in total distances travelled
were smaller in true pairs compared to randomised
pairs (binomial GLMM: % = 26.14, df = 1, p < 0.0001).
Further, there was a significant effect of stage on the
differences in total distances (binomial GLMM: y? =
7.74, df = 1, p = 0.005), and a significant interaction
between pairing and stage (binomial GLMM: y? =
24.90, df = 1, p < 0.0001). Specifically, mates differed
in total distances travelled by 14.95 + 0.80 km at incu-
bation/early chick-rearing, and 16.38 + 0.71 km in late
chick-rearing; in contrast, the differences in total dis-
tances for non-paired birds did not significantly
change between incubation/early chick-rearing (19.80
+ 0.36 km) and in late chick-rearing (19.61 + 0.25 km).

Pair 1 Pair 2 Pair 3

requency (%)
2

100+

=

ol= A_ml

Within pairs, no specific pattern was observed in
terms of the consistency of males and females, both
in terms of diving behaviour (Fig. 1) and spatial use.
Paired birds were not more similar or dissimilar in
consistency in maximum depth, dive duration, and
sum of vertical distance (permutational p = 0.14).
Lastly, paired birds were not more similar or dissimi-
lar in spatial use consistency (consistency index, SD
in bearing, CV in maximum distance, total distance,
and trip duration) compared to non-paired birds
(permutational p = 0.51).

Males always departed after their mates came back
from their morning foraging trips during incuba-
tion/early chick-rearing, and did so 75.8 % of the time
during late chick-rearing. Within pairs, males and

Pair 4 Pair 5 Pair 6

Trip 1

Trip 2

Trip 3

Trip 4
Trip 5

I - b m -

Trip 6

Trip 7

Trip 8
L P

‘ B Male [ Female Trip 9

T T T T

0 25 60 75 0 25 50 76 0 25 50 75

0 25 50 75

T T T T T T T T T T T

0 25 60 75 0 25 50 75

Dive depth (m)

Fig. 1. Dive distributions in relation to dive depth for pairs of Kerguelen shags Phalacrocorax verrucosus equipped at the
Pointe Suzanne colony, Kerguelen Islands
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Fig. 2. Consecutive GPS tracks for all pairs of Kerguelen shags Phalacrocorax verrucosus equipped at the Pointe Suzanne
colony, Kerguelen Islands

females followed similar bearings to their foraging
areas (binomial GLMM: %% = 187.14, df = 1, p <
0.0001) (Fig. 2) and there was a significant effect of
stage on differences in bearings (binomial GLMM:
xz = 32.36, df = 1, p < 0.0001), but no interaction
between stage and the differences in bearings (bino-
mial GLMM: x? = 2.60, df = 1, p = 0.11). Mates dif-
fered in bearings by 41.8 + 2.9° at incubation/early
chick-rearing and 51.98 + 2.2° in late chick-rearing;
in contrast, the differences in bearings for non-paired
birds were 55.7 + 1.0° at incubation/early chick-rear-
ing and 70.68 + 0.8° in late chick-rearing. Overall,
paired birds overlapped significantly more than non-
paired birds (binomial GLMM: 32 = 159.05, df = 1, p <
0.0001) and overlap was not affected by stage (bino-
mial GLMM: %% = 1.60, df = 1, p = 0.21). The mean
overlap was 14.5 + 0.6 % for paired birds and 9.8 +
0.2 % for non-paired birds.

There were large inter-individual differences
in both §°C and §'°N values in blood of the
sampled Kerguelen shags (difference: 5.5 and
3.6 %o, respectively) (Table S3, Fig. S1). Blood
813C values ranged from —19.97 to —14.44 and
8!°N values ranged from 12.88 to 16.68. There
were no differences in blood isotopic values be-
tween sexes, thus confirming that males and fe-
males had similar foraging habitats (3'3C) and
diet/trophic levels (8'°N) during breeding.
When taking into account both blood §!°C and
815N values, partners were not more similar or
dissimilar than expected by chance for both
stages (permutational p = 0.43 and p = 0.31, at

Male blood §'3C (%.)

incubation/early chick-rearing and late chick-rearing,
respectively). Blood 8'°C values of paired birds were
not more similar or dissimilar than expected by chance
(permutational p = 0.86 and p = 0.74, at incubation/
early chick-rearing and late chick-rearing, respec-
tively). However, blood 8'°N values of paired birds
were closer than expected by chance (permutational
p = 0.04 and p = 0.01, at incubation/early chick-
rearing and late chick-rearing, respectively). Indeed,
in contrast to blood §'3C values, male blood §'°N val-
ues were positively linearly correlated to female §'°N
values (Fig. 3). As with blood, there were large inter-
individual differences in feathers in both 8°C and
8!°N values of the sampled Kerguelen shags (differ-
ence: 6.7 and 3.9 %o, respectively), with 3'3C values
ranging from —20.06 to —13.32 and 8'°N values rang-
ing from 13.47 to 17.41. Partners did not have more

16

Male blood 85N (%o)

2 =054
p = 0.002

[ J
T T T

1 1

T T T T
13 14 15 16 17

Female blood §'5N (%)

T T 1
-19 18 17 -16 -15 -14

Female blood §'3C (%)

12

Fig. 3. Correlations in blood §*C and 8!°N values of partners of
Kerguelen shags Phalacrocorax verrucosus (partners are indicated
by shared colours, n = 11 pairs) sampled at the Pointe Suzanne

colony, Kerguelen Islands; 3N & = 0.89 - §'°N ¢ + 1.42
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similar feather isotopic values, whether taking into
account both §'°C and §'°N values, §'*C values only,
or 3!°N values only (permutational p = 0.59, 0.68, and
p = 0.10, respectively).

DISCUSSION AND CONCLUSIONS

In the present study, we investigated the similarity
or dissimilarity in the foraging strategies of Kergue-
len shag Phalacrocorax verrucosus partners using
the complementary approaches of bio-logging and
stable isotope analysis. The salient results can be
summarized as follows: (1) mates did not show assor-
tative or disassortative mating by either morpho-
metrics or behavioural consistency; (2) they were,
however, more similar than expected by chance in
foraging behaviour, followed more similar bearings,
and overlapped more in foraging areas, and (3) they
had more similar diets/similar trophic levels than
expected by chance.

Our results confirm previous findings that Kergue-
len shags are dimorphic in body size and mass (Cook
et al. 2013). Within breeding pairs, males were al-
ways heavier and generally structurally larger than
their female partners. Such strong sexual dimor-
phism suggests a differential niche utilization for
males and females in the population (Selander 1966,
Cook et al. 2013) with the potential to affect pair
similarity/dissimilarity in foraging behaviour. Indeed,
it is expected that dimorphic mates exhibit a higher
dissimilarity compared to monomorphic species, as
dimorphic birds can display divergent foraging be-
haviours based on their morphology (Weimerskirch
et al. 2006, Elliott et al. 2010). While Kerguelen shags
are dimorphic and exhibit temporal segregation with
females foraging mostly in the morning and males
mostly in the afternoon, differences in their foraging
behaviour and its consistency during the time of this
study were shown to be limited (Camprasse et al.
2017a). If sexual dimorphism led males and females
to display different foraging strategies, then pair dis-
similarity in foraging behaviour would be expected.
However, in the present study, differences in forag-
ing behaviour between males and females were lim-
ited, so if any pair dissimilarity in foraging behaviour
were found, it would be due to different factors.

In the present study, we found no evidence of size-
assortative or -disassortative mating. Although sea-
birds are known to mate assortatively by size (Wag-
ner 1999, Forero et al. 2001, Helfenstein et al. 2004),
structural size is not necessarily enough to explain
mate choice (Bried & Jouventin 2002, Berzins et al.

2009). Indeed, in some cases, assortative mating is
based on ornamental traits such as plumage or foot/
beak colour, rather than structural size (Berzins et al.
2009, Nolan et al. 2010). For example, in other Pha-
lacrocorax species, assortative mating with respect to
crest size has been shown to occur, with crest size
being an indicator of individual condition (Daunt et
al. 2003). Alternatively, lack of size-assortative mat-
ing has been shown in birds and might happen when
a specific trait is sexually selected in one sex only
(Murphy 2008), which seems less likely in our study
species as it has not been shown in shags. Instead of
preferring mates that are similar to themselves, all
individuals could also show the same preferences for
a trait, especially when it is an honest signal indi-
cative of individual quality (Jones et al. 2008, Schuett
et al. 2010).

Despite the sexual dimorphism and the lack of size-
assortative mating that was expected to reduce the
degree of behavioural similarity in dimorphic mates,
our findings suggest that partners are still more
similar than non-mated birds in foraging behaviour.
Indeed, mates exhibited smaller differences in dive
depths and total distances travelled compared to
non-paired birds. This pairing in terms of foraging
behaviour might result from an active choice if indi-
viduals are able to evaluate potential mates and their
quality, as individual quality and foraging para-
meters have been shown to be linked (Lewis et al.
2006, Lescroél et al. 2010). For example, in common
murres Uria aalgae, females of higher quality had in-
creased chick feeding rates and lower trip durations
(Lewis et al. 2006). Similar patterns were found in
Adélie penguins Pygoscelis adeliae, especially at the
end of the breeding season, with poorer breeders
diving deeper and making longer trips (Lescroé€l et
al. 2010). Alternatively, this pair similarity could be a
consequence of developing similar behaviours after
pairing, as a result of communication between mates.
Studies investigating the similarity or dissimilarity
in behaviour in partners are lacking. Contrasting
with our results, imperial shag Phalacrocorax atri-
ceps pairs were shown to be constituted of either
both benthic members, both pelagic members, or a
mixture of both (Harris et al. 2016). Positive assort-
ment by behaviour has been shown in a few studies
in groups such as birds (Both et al. 2005, Schuett et
al. 2011), fishes (Budaev et al. 1999), and cephalo-
pods (Sinn et al. 2006). In other contexts, better repro-
ductive outcomes might be associated with the fact
that more similar individuals exhibit improved coop-
eration and coordination, leading, for example, to
better provisioning of offspring (Spoon et al. 2006,
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Schuett et al. 2010, Sdnchez-Macouzet et al. 2014).
This might explain the fact that mates were more
similar to each other at incubation/early chick-rear-
ing compared to late chick-rearing, as increased co-
operation and coordination is more crucial when
mates are incubating or guarding small chicks, as this
is the period where parents are most at risk of losing
their eggs or chicks through accidental dislodgement,
predation, and/or hypothermy (Tveraa et al. 1998,
Kober & Gaston 2003, Catry et al. 2006).

There is some evidence that certain combinations
of levels of consistency within pairs can influence
their reproductive success, and behavioural consis-
tency might be important for mate choice (Schuett
et al. 2010, 2011). An individual might benefit from
choosing a partner exhibiting consistent behaviour;
for example, it might profit from having a mate show-
ing a consistent level of paternal care or territory
defence by avoiding having to constantly re-assess its
mate's quality and accordingly adjust its own behav-
iour (Schuett et al. 2010). Assortative mating by be-
havioural consistency might be expected when con-
sistency is an indicator of quality and/or predictability
in provisioning behaviour and parental care; con-
sistent individuals would then be expected to mate
preferentially with consistent individuals, resulting in
inconsistent individuals having to mate with each
other (Schuett et al. 2010). Furthermore, it might be
beneficial to choose a mate with high consistency, as-
sociated with the benefits mentioned above, but dis-
similar behaviour, linked with the acquisition of more
diversified prey items, for example (Watanuki 1992).
Risk partitioning can increase fitness in paired indi-
viduals, with one partner adopting a risk-averse strat-
egy to provide enough food for chicks to be able to
fledge and the other exhibiting a risk-prone strategy
to provide the extra bulk for enhanced post-fledgling
survival (Elliott et al. 2010). As risk-prone individuals
can be more inclined to explore new environments
and, therefore, be less consistent in their foraging be-
haviour (Dingemanse et al. 2003, Bremner-Harrison
et al. 2004), disassortative mating by behavioural
consistency has the potential to be beneficial in pairs,
resulting in improved fitness. Despite these apparent
advantages of assortative or disassortative mating by
behavioural consistency, no such pattern was ob-
served in Kerguelen shags at our study site. Hence,
individuals in the present study might predict their
mates’ provisioning behaviour based on their similar-
ity in foraging behaviour rather than whether they
are similarly consistent or not.

We propose that breeding success is related more
to foraging behaviour than consistency in foraging

behaviour. For example, poorer breeders might have
longer trip durations, associated with longer distances
travelled and better breeders might dive deeper
(Lewis et al. 2006, Lescroél et al. 2010). The breeding
success of pairs (number of fledglings, fledgling mass)
in our study could not be determined, however, and
we could not determine whether more similar or dis-
similar partners in terms of behaviour or behavioural
consistency had a higher breeding success. Future
studies should aim at incorporating such parameters,
as well as investigate the influence of differences in
environmental conditions and thus prey availability,
on pair similarity. In order to better understand the
interplay between pair similarity and environmental
conditions, it would be necessary to quantify pair sim-
ilarity and breeding success in moderate environmen-
tal conditions, when among-pair variation is likely to
be greatest.

In the present study, partners were found to follow
more similar bearings, especially at incubation/early
chick-rearing, as well as to overlap significantly more
in foraging areas compared to non-mated birds. To
the best of our knowledge, such a pattern differs from
the only study reporting on mate overlap in spatial
use in central-place foragers: imperial shag partners
in Argentina did not seem to overlap, although
whether partners overlapped more or less than non-
paired birds was not tested (Harris et al. 2016). The
results shown in our study suggest that such patterns
could result from mate choice and/or could allow birds
to reduce time spent searching for food if individuals
use information gained regarding their partners’ for-
aging strategies to adopt more efficient tactics (e.g.
local enhancement). Indeed, seabirds, including cor-
morants, are known to be able to use visual, tactile,
and olfactive cues from their congeners for more effi-
cient foraging (Ward & Zahavi 1973, Silverman et al.
2004, Weimerskirch et al. 2010) as are other groups of
animals (Galef & Wigmore 1983, Drapier et al. 2002,
White et al. 2008). Furthermore, seabirds are able to
use information transfer and depart the colony fol-
lowing the direction from which conspecifics are re-
turning to the colony (Tremblay et al. 2014). A trans-
fer of information between paired birds would be
facilitated by the temporal segregation in foraging
between males and females, with males cueing on
their partners’ flight directions as they return from
morning foraging trips and follow more similar bear-
ings to their partners compared to other conspecifics
(Tremblay et al. 2014). Such similarity not only in
bearings but also in foraging areas might also ex-
plain why mates tended to dive at more similar
depths, as Kerguelen shags are benthic divers.



Camprasse et al.: Mate similarity in foraging Kerguelen shags 193

The spatial overlap in foraging range shown here
could explain why partners tended to consume prey
at similar trophic levels. This pattern did not occur
outside of the breeding season, when birds are not
constrained to come back to the nest and therefore
are less likely to gather information from their part-
ners, as judged by the 3'°N values of feathers. Assor-
tative mating by diet has been shown to occur in
fishes and may reflect either the ability of individuals
to evaluate potential mates or a consequence of an-
other preference (e.g. habitat choice, morphology)
(Snowberg & Bolnick 2008, Martin 2013). Therefore,
assortative mating by diet could either reflect a pref-
erence for partners that have similar diets or be a
consequence of other factors after pairing based on
other criteria has occurred. As it is unclear how in-
dividuals are able to assess prospective mates' diet,
it seems more likely that individuals choose mates
based on their individual quality, for example via the
selection of mates with similar crest sizes (Daunt et
al. 2003), and then feed at similar trophic levels as a
consequence of exhibiting similar foraging behav-
iour and prospecting for food in similar areas. In con-
trast, no correlation was observed within breeding
pairs in the plasma 8'°N values of imperial shags and
all potential combinations of foraging behaviour
were found within pairs (both partners were benthic
feeders, or pelagic feeders, or the pairs were mixed,
Harris et al. 2016). Similarity in food preferences
within breeding pairs has also been reported in great
skuas Stercorarius skua and slaty-backed gulls Larus
schistisagus, in which, in contrast to Kerguelen
shags, mates frequently hunt together (Watanuki
1992, Votier et al. 2004). In slaty-backed gulls, the in-
crease in diet overlap between mates corresponded
with a decrease in chick growth rates and number of
fledglings produced (Watanuki 1992). Therefore, the
benefits for partners of foraging on similar prey
remain unclear, unless it derives from mates commu-
nicating on where to find food for reduced searching
time and improved chick provisioning as suggested
above.

Other factors could lead to mates being more simi-
lar foragers than expected by chance which also af-
fect their ability to rear offspring (Bradley et al. 1995,
Jouventin et al. 1999, Ludwig & Becker 2008); some
species exhibit age-specific dietary and spatial seg-
regation, primarily determined by a ‘cohort effect’ that
would lead individuals sharing a common life history
to forage preferentially together or to share similar
foraging limitations (Pelletier et al. 2014). Lastly, sub-
colony variation, known to occur even in small colo-
nies, could indirectly influence the overlap in forag-

ing areas and the similarity in diet within pairs
(Masello et al. 2010, Bogdanova et al. 2014). In those
studies, individuals at similar locations within the
colony tended to forage in the same direction. In our
study, however, birds were equipped within a few
meters of each other yet still foraged repeatedly in
different directions (Camprasse et al. 2017a).

In conclusion, Kerguelen shags were paired with
partners that displayed more similar foraging behav-
iour, foraging bearings, and overlap in foraging areas
and diet trophic level than expected by chance. We
suggest that shags may pair with individuals of simi-
lar quality (e.g. via selection for individual of similar
crest size or other traits signalling quality), resulting
in mates having similar foraging abilities. They thus
have the potential to forage in areas of similar char-
acteristics. Further exchange of information between
mates at change-overs could then lead mates to fol-
low similar bearings and overlap more in foraging
areas compared to non-paired birds; in turn, this may
lead mates to feed at more similar trophic levels.
Investigating the ways in which birds assess mate
quality (e.g. in terms of foraging efficiency, ornamen-
tation, condition or experience) is crucial to build on
the conclusions of the present study. Collecting data
during years of different environmental conditions
will also help understand if the patterns highlighted
in our study are maintained in years of better food
availability. Lastly, more studies are necessary to
understand the reproductive consequences of mate
similarity and should incorporate, for example, long-
term measures of reproductive success (Fraser et al.
2002). Such a step is crucial to understand the reper-
cussions of mate choice in seabirds.
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ABSTRACT: Quantifying within- and between-individual variation in animal migration strategies
is a first step towards our understanding of the ability of migrants to adjust to changes in the en-
vironment. We studied consistency (or, conversely, flexibility) in movement patterns at large
(>1000 km) to meso-scales (100-1000 km) during the non-breeding season of the long-tailed skua
Stercorarius longicaudus, a long-distance migratory Arctic seabird, using light-based geolocation.
We obtained 97 annual tracks of 38 individuals and quantified similarity between routes. Overall,
tracks of the same individual were generally within about 200 to 300 km of their previous year's
route, and more similar than tracks of different individuals. Some flexibility was observed during
migration, but individuals were faithful to their staging areas in the North Atlantic and in the
Benguela Current off Namibia and South Africa. Over the course of the winter, an increasing
number of individuals started to deviate—up to 5200 km—from the previous year's route.
Intriguingly, individuals could be highly consistent between 2 consecutive years and flexible
between other years. Site-shifts in late winter seem to reflect responses to local conditions, but
what promotes this larger flexibility remains unclear and requires further study. Our results show
that individual long-tailed skuas are generally consistent in their itineraries, but can show consid-
erable flexibility in some years. The flexibility in itineraries suggests that long-tailed skuas are
able to adjust to environmental change, but the mechanisms leading to the observed within- and
between-individual variation in movement patterns are still poorly understood.

KEY WORDS: Individual consistency - Repeatability - Stercorarius longicaudus - Seabirds -
Tracking - Non-breeding movements - Flexibility
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INTRODUCTION

The ability to track the movements of individual
birds throughout multiple annual cycles has fuelled
interest in individual variation in migration and win-
tering patterns (e.g. Phillips et al. 2005, Dias et al.
2011, Guilford et al. 2011, Vardanis et al. 2011).
Quantifying variation in movement patterns within
and between individuals is a first step to ultimately
understand the ability of populations to adjust their
movement patterns to changes in the environment,
as selection acts on phenotypic variation (Alerstam
2006, van Noordwijk et al. 2006).

Intriguingly, species vary in the degree of individ-
ual consistency (or, conversely, their flexibility) in
movement patterns, i.e., the degree to which individ-
uals use the same migration routes or staging areas
between years (Dias et al. 2011, Guilford et al. 2011,
McFarlane Tranquilla et al. 2014, Vardanis et al.
2016). We are only starting to understand what drives
consistency in individual use of staging areas, but it
is generally assumed that the spatio-temporal pre-
dictability of resources is important (Newton 2010,
Trierweiler et al. 2013). Seabirds are an interesting
species group in this respect, as oceanic areas show
large spatio-temporal differences in both availability
and predictability of resources (Longhurst 2006,
Weimerskirch 2007). While seabirds likely target ar-
eas with high productivity for foraging (which can
vary in predictability; Weimerskirch 2007), migration
routes connecting staging areas are often strongly
linked to wind patterns that allow efficient travelling
(Felicisimo et al. 2008), and they often traverse large
areas with low availability and/or predictability of re-
sources. Thus, movement patterns of seabirds during
the non-breeding season might consist of a combina-
tion of consistent itineraries in periods or areas with
high resource availability and more flexible, nomadic
movement patterns in periods or areas with low re-
source availability, such as areas crossed during mi-
gration. A synthesis on how consistency in staging
site and migration routes use might vary throughout
the non-breeding season is still lacking.

Using light-based geolocation to track individuals,
we studied the consistency of movement patterns of
the long-tailed skua Stercorarius longicaudus during
the non-breeding season at large (>1000 km) to meso
(100-1000 km) scales. This long-distance migratory
seabird breeds in the sub- to high Arctic. Details of mi-
gration routes, stopovers and movements during
winter in the southern Atlantic have only recently been
revealed (Sittler et al. 2011, Gilg et al. 2013). Gilg et al.
(2013) showed thatlong-tailed skuas have a strategy of

itinerancy, i.e. visiting multiple places throughout
the winter (Moreau 1972). This behaviour is not
uncommon among seabirds (e.g. Phillips et al. 2005,
Hedd et al. 2012, Fijn et al. 2013, van der Winden et al.
2014, Orben et al. 2015) but notably different from a
strategy of residency where only a single wintering
site is used (McFarlane Tranquilla et al. 2014, Yama-
moto et al. 2014). Itinerancy is an interesting strategy
in the context of consistency versus flexibility in site
use, as it, at least intuitively, leaves more possibility
for flexibility, even during the winter period.

We quantified variation in individual movement
patterns throughout the entire non-breeding season,
thus including migration and winter periods. In par-
ticular, we investigated if, where and when move-
ment patterns differ between and within individuals.
As long-tailed skuas seem to exploit areas with pre-
dictable high productivity, e.g. the Benguela Current
and the central North Atlantic (Gilg et al. 2013), we
expected individuals to revisit the same staging
areas and thus to exhibit high levels of consistency in
their itineraries.

Most earlier studies on the consistency of bird mi-
gration were based on individuals tracked over 2 con-
secutive years (e.g. Dias et al. 2011, Guilford et al.
2011, McFarlane Tranquilla et al. 2014). Although this
allows partitioning of within- and between-individual
variation in behaviour, 3 or more years of tracking
data are needed to study whether individuals vary in
their behavioural flexibility (i.e. not the level, but the
‘width’ of their behavioural response; Dingemanse &
Wolf 2013). This idea has, to our best knowledge, not
been explored to date, but is needed to understand if
and how migrants may cope with environmental
change. We tracked individual long-tailed skuas for 3
or more years and investigated whether individual
birds display the same level of consistency or flexibil-
ity across years, or can be consistent between some
years but flexible between other years.

MATERIALS AND METHODS

Study species, study areas, capture techniques and
geolocator deployment

Two subspecies are recognized in the long-tailed
skua: the nominate subspecies Stercorarius longicau-
dus longicaudus breeds from Scandinavia eastwards
and is replaced by the white-bellied subspecies S. I.
pallescens from eastern Siberia to Svalbard (Man-
ning 1964). Only the migration of S. . pallescens has
been revealed before, by Gilg et al. (2013), showing
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that skuas breeding in Greenland and Svalbard
depart from the breeding areas in late August,
migrate via a stopover in the central North Atlantic
towards West Africa and arrive at the main wintering
grounds off southern Africa between late September
and late November. Spring migration commences in
March or April, and birds arrive on the breeding
grounds in late May/early June.

Adult long-tailed skuas of the nominate subspecies
S. L longicaudus were captured between 2011 and
2015 in the Vindelfjallen Nature Reserve near Am-
marnds, Sweden (65°59'N, 16°01'E). Adults of the
Nearctic subspecies S. I. pallescens were captured be-
tween 2010 and 2015 at Kongsfjorden, Svalbard
(79°57'N, 12°6' E) and 3 sites in Greenland: Zacken-
berg (74°28' N, 20°34' W), Karupelv (72° 50" N, 24° 00" W)
and Hochstetter Forland (75°09'N, 19°40'W). Birds
were captured on the nest using bow nets or remote-
triggered nooses and away from the nest using hand-
held net guns or noose carpets (in a few cases, birds
were lured by a decoy and playback of the 'long
call'—a call used in courtship and territorial disputes).
Geolocators of 3 types (Mk-18L and Mk-18H, pro-
duced by the British Antarctic Survey, and C65, pro-
duced by Migrate Technology) were leg-mounted us-
ing a Darvic ring. The total added weight (geolocator,
Darvic ring, cable tie, self-amalgamating tape and
super glue) amounted to ca. 2.2, 2.6 and 1.8 g for the
Mk-18L, Mk-18H and C65 types, respectively, which
is 0.5 to 1.2% of the mean body mass of adult long-
tailed skuas (n = 129). In addition, biometry and a
blood sample for DNA sexing were taken. Individuals
were sexed using molecular techniques (Fridolfsson &
Ellegren 1999). Single tracks from 8 individuals from
Greenland and Svalbard have been published earlier
(Gilg et al. 2013). The period between 2 subsequent
breeding seasons is referred to as a year; the data ob-
tained in this period are referred to as a track. Ref-
erences to seasons are from a northern hemisphere
perspective.

Geolocator data analyses

After recapture of the tagged birds, geolocators
were removed and data were downloaded from the
geolocators and decompressed using BASTrak (British
Antarctic Survey) or IntigeolF software (Migrate
Technology). The subsequent analysis was carried
out entirely using R 3.1.2 (R Core Team 2015) and a
set of packages, in particular the R package ‘GeoLight’
(Lisovski & Hahn 2012). Geolocators recorded ambient
light level in arbitrary units (Mk-18L, Mk-18H) or lux

(C65) in 1 min intervals and saved the maximum of
these values every 5 min. Sun events were calculated
unsupervised from light measurements using the
function ‘twilightCalc' and a light threshold value of
10 (Mk-18H) or 2 (C65). Spending the non-breeding
season entirely at open sea, light measurement data
from the long-tailed skuas was generally ‘clean’, i.e.
most sun events could automatically be assigned with
a relatively low amount of misclassification (due to
e.g. shading events). This was checked by visual in-
spection of plots of date against time of sunrise or sun-
set, from which unlikely twilight events were identi-
fied and removed. For a sequence of potential sun
angles, locations were calculated for each noon and
midnight. We selected the sun angle resulting in a
good fit of location estimates to the shape of the conti-
nents and a close match in latitude estimates before
and after the equinoxes. Final sun angles for individ-
ual loggers ranged from -1° to —3° for the Mk-18H
model and -4.5° to —6.0° for the C65 model. Position
estimates from light-based geolocation typically have
a mean error of +185 km for flying seabirds (Phillips
et al. 2004) and these errors are especially large in
close proximity to the equinoxes. Therefore, posi-
tions within 14 d from either side of the equinoxes (20
March and 22 September) were removed. Remaining
positions were smoothed by calculating the 3 d run-
ning mean, using equations from Gilg et al. (2013). All
further analyses were based on smoothed positions,
with no data around the equinoxes.

Staging areas

We followed Gilg et al. (2013) in defining staging
periods when distance between smoothed positions
were smaller than 200 km for at least 3 consecutive
days. Subsequently, staging areas were identified by
creating a 95 % utilization distribution kernel based
on staging positions of all individuals, using the ‘ade-
habitatHR' package for R (Calenge 2011). For this, a
Lambert azimuthal equal-area projection was used
with a grid cell size of 50 km and a smoothing factor of
200 km. Kernels were estimated for 4 space/time seg-
ments of the data: (1) before 1 January, between 25°
and 60°N, (2) before 1 January, south of 25°N, (3)
after 31 December, south of 25° N and (4) after 31 De-
cember, between 25° and 60° N. The split at 1 January
is well after arrival at the main wintering areas but be-
fore long-distance northward movements (Gilg et al.
2013). The area between 25° and 60° N encompasses
the large stopover area in the North Atlantic used by
many seabirds, including long-tailed skuas (Sittler et
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al. 2011, Gilg et al. 2013). Few positions were ob-
tained north of 60°N, in particular for birds breeding
at Svalbard or Greenland as they travelled here at
times with more or less constant daylight. The area
south of 25° N contains all wintering areas.

Consistency in movement patterns

Within- and between-individual consistency was
mapped over entire recorded tracks, applying the
method used by Guilford et al. (2011) and Dias et al.
(2013) to calculate distances between tracks, based
on nearest-neighbour analysis. For each position
estimate in a focal track, we calculated the great-cir-
cle distance to the nearest position estimate in an-
other track. The nearest neighbour was selected from
the comparison track within a time window. Using a
short time window will retain effects of different tim-
ing (hence can be used to test for route and timing
consistency, which is not the topic of the current con-
tribution), whereas a longer time window removes
the effect of timing (thus tests for route consistency
only). We quantified median within-individual inter-
track distances for a range of time windows (7 to
121 d, with steps of 6 d) to investigate when the grad-
ual removal of a timing effect on the intertrack dis-
tance fades. Next, one time window was selected
visually Fig. Al in the Appendix) and used for the
analysis and figures of route consistency. If 2 tracks
follow the same route, intertrack distances from the
first track will be biased in the part where the com-
parison track has missing values due to the equinox.
Therefore, if the nearest neighbour of the compari-
son track is a first or last position on either side of the
equinox, this measurement is excluded. In this way,
only more or less parallel parts of the tracks are com-
pared, reducing bias due to missing positions during
equinoxes. For reasons of interpretability, we only
included comparisons of each track with tracks from
the previous year.

We studied the resulting intertrack distances in 2
ways. First, we calculated the overall median inter-
track distance per comparison to get an overall meas-
ure of track similarity. To allow for greater spatio-
temporal resolution and inference of fidelity to
staging areas, we also calculated the median inter-
track distance per comparison for 6 ‘segments’. Me-
dian intertrack distances were then calculated within
the 4 staging kernels mentioned above. In addition,
median intertrack distance was calculated for the
southbound (before 1 January) and northbound mi-
gration (at or after 1 January) based on all locations

that fell outside the staging kernels and south of
50°N. The resulting values were continuous, non-
negative and right-skewed. Although such data can
be modelled using e.g. gamma or inverse-Gaussian
error distributions, we log-transformed the data (a
variance-stabilizing transformation) to allow the use
of a Gaussian error distribution, for which routines to
calculate intra-class correlation coefficients (ICCs or
1, repeatability) are readily available (Nakagawa &
Schielzeth 2010). Bayesian generalized linear mixed
models (GLMMs) were fitted using the package
MCMCglmm for R (Hadfield 2010), with 130 000 iter-
ations, a burn-in of 30000 iterations and a thinning
rate of 100. As an indication of significance, we pro-
vide pmemc values, which are twice the probability
that the parameter value is above or below zero. A
focal individual in each comparison was included as a
random effect to account for pseudo-replication and
to assess within- and between-individual variance
components. If populations differ in migration routes
and destinations, they may inflate between-individual
intertrack distances. We therefore first explored
whether between-individual and within-individual
intertrack distances differed between subspecies,
then compared within-individual intertrack distances
with between-individual intertrack distances of each
subspecies.

Second, in order to more precisely illustrate spatio-
temporal patterns in within- and between-individual
route consistency, we bootstrapped the median of
intertrack distances 10000 times for each calendar
day and, separately, in each 5° latitude x 5° longitude
grid cell, with only 1 track ind."! selected in each iter-
ation. We performed this bootstrapping procedure
for within-individual and between-individual inter-
track distances. To illustrate how the spatial pattern
in intertrack distances relates to staging areas, we
overlaid it with the staging area kernels (see above).
With median intertrack distances visualized on a
continuous scale, we aided the eye by using a red
outline for grid cells with a median intertrack dis-
tance of <500 km.

Individual variation in route flexibility

To test whether individuals differ between consec-
utive years in their route flexibility, e.g. whether
some individuals are repeatedly flexible and others
are repeatedly consistent in their routes or whether
individuals may be consistent between some years
and flexible between others, we calculated ICCs for
within-individual median intertrack distances be-
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tween tracks from subsequent years (i.e. with only
1 yr difference) using the 'rpt.mcmcLMM' function
from the ‘rptR' package (Schielzeth & Nakagawa
2013). Note that the term 'repeatability’ is used here
only to refer to ICC values.

RESULTS
Sample size

In Ammarnas, Sweden, out of 46 geolocators de-
ployed in 2011 to 2014, 27 (59 %) were retrieved by
2015. Numbers of retrievals and deployments are 20
out of 30 (67 %) for Svalbard, 5 out of 14 (36 %) for
Zackenberg, 2 out of 6 (33 %) for Karupelv and 1 out
of 3 (33%) for Hochstetter Forland. Note that some
individuals were refitted and recaptured multiple
times and that recapturing birds in Sweden and
Greenland is hampered by non-breeding years. In
total, 97 tracks were obtained from 38 individual
long-tailed skuas, of which 24 individuals were
tracked over a period of 2 to 5 yr. See Table 1 for fur-
ther specification of samples relative to subspecies.
Due to logger failure or empty batteries, 14 tracks
stopped prematurely between 28 December and 1
May; these were included in the analysis.

General movement patterns

All tracks are illustrated in Fig. 1 and in an anima-
tion in the Supplement at www.int-res.com/articles/
suppl/m578p197_supp/, while some examples of in-
dividual tracks are shown in Fig. 2. No systematic dif-
ferences in non-breeding movements were detected
between the 2 subspecies. After departure from the
breeding areas, skuas proceeded south-west to stage

Table 1. Number of individual long-tailed skuas Stercorarius
longicaudus (subspecies S. I. longicaudus and S. I palles-
cens) tracked over different numbers of years

No. of years S. L S. L Total
longicaudus  pallescens
1 9 5 14
2 1 3 4
3 2 4 6
4 11 2 13
5 0 1 1
Total (individuals) 23 15 38
Total (tracks) 61 36 97

in the central North Atlantic off Newfoundland. Sub-
sequently, they went south in a relatively narrow cor-
ridor to the Canary Current off West Africa. From
here, most birds migrated directly to the staging area
in the Benguela Current off Namibia and South
Africa, whereas 6 individuals (9 tracks) took a west-
erly loop to approach the Benguela Current from the
west. A few proceeded further south-east into the
Agulhas Current and the Southern Subtropical Con-
vergence. A single individual (S. I. longicaudus) went
straight west from the Benguela to the Falkland Cur-
rent in its second and fourth year of tracking (Fig. 2i).
Other individuals lingered along the west side of
Africa, in particular off Angola. The most northerly
winterer was a (S. 1. Iongicaudus) wintering in the
Canary Current. Northward movements commenced
in January to March and occurred over a broad front,
covering a large part of the Atlantic, and included
stopovers of varying length off Angola, in the Gulf of
Guinea and the Canary Current. After crossing the
equator, virtually all birds staged in a large area in
the central North Atlantic in April-May (mostly
within the North Atlantic Drift Province), which they
usually slowly crossed from west to east. Some birds
staged for a few days west of Ireland before return-
ing to the breeding grounds.

Route consistency

Intertrack distances showed a strong seasonal pat-
tern when using a narrow time window for nearest-
neighbour selection, with large distances in autumn
and late winter, and much smaller distances in early
winter and spring. Broadening the time window
greatly reduced intertrack distances, in particular in
autumn (Fig. A1l). For example, median within-indi-
vidual intertrack distance at 15 August was ca.
3000 km for a time window of 7 d, ca. 2000 km for a
time window of 30 d and ca. 800 km for a time win-
dow of 61 d (Fig. A1). This was mainly caused by the
fact that Swedish birds during non-breeding years
had earlier autumn migration schedules, but not dif-
ferent migration routes. As the effect of differential
timing was largely removed at a time window of 61 d,
intertrack distances obtained using this time window
were therefore used in subsequent analyses.

Daily median intertrack distances were smaller
within individuals than between individuals during
almost the entire year (Fig. 3). Between-individual in-
tertrack distances differed between the subspecies,
and therefore ‘subspecies’ was included as a factor
in the models. Note that this does not necessarily indi-
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Fig. 1. Movements of the 2 subspecies of long-tailed skuas Stercorarius longicaudus, (a,c) S. I. longicaudus and (b,d) S. L
pallescens, in (a,b) July-December and (c,d) January-June. Red dots indicate staging periods (3 or more consecutive days

with <200 km between daily positions). Black stars indicate the sampled breeding sites for each subspecies. The black out-
lined polygons indicate 95% utilization distribution kernels for staging positions of all birds combined. Inaccuracy of geo-

locator position estimates is generally £185 km, but is typically larger close to the equinoxes (Phillips et al. 2004)

cate different routes and site use between the sub-
species —it only reflects a difference in the spread in
routes and site use (cf. Fig. 1). Overall median inter-
track distances were significantly smaller within
(model-based, back-transformed posterior mean [u]
and 95 % credible intervals [CI]: p = 274 km, 95% CI =
217-351 km, pyicmce < 0.001) than between individuals
(Fig. 4; S. 1 longicaudus: u = 535 km, 95% CI = 347

835 km, pmemc < 0.001, S. L pallescens: | = 928 km,
95 % CI = 569-1484 km, pyemce < 0.001). This was also
true in a model testing the median intertrack distance
per segment (Fig. 4; all pyemce < 0.001), except for the
North Atlantic staging area during southbound mi-
gration (for S. I. pallescens only; pyemc = 0.370) and
northbound migration (for both S. I Ilongicaudus:
Pveme = 0.536, and S. 1. pallescens: pycemc = 0.020).
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Fig. 2. Nine examples of geolocator tracks of individual long-tailed skuas Stercorarius longicaudus tracked over multiple years

(blue: July-December, orange: January—June). Numbers on the right are ring numbers, cf. Fig. 6, and number of years

tracked. Black stars indicate the breeding site of each individual. Examples include (a—e) individuals with high route consis-

tency and (f-i) individuals with more flexibility in their recorded routes. The individual shown in (h) took a detour along the

Falkland Current in one year, while the individual in (i) went to the Benguela Current in all 4 years, but switched mid-winter

to the Falkland Current in its second and fourth year of tracking. Inaccuracy of geolocator position estimates is generally
+185 km, but is typically larger close to the equinoxes (Phillips et al. 2004)

Within-individual intertrack distances did not differ side staging area kernels during northbound (Fig. 4;
between the subspecies and therefore ‘subspecies’ W =702 km, 95% CI =500-1026 km) and southbound
was not included in the models (ppemce = 0.448). migration (U = 689 km, 95% CI = 524-871 km), which
Within-individual intertrack distance was largest out- were not significantly different (pypemc = 0.944).
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Fig. 3. Daily route consistency per month. (a) Distribution of bootstrapped median intertrack distances (red and blue) for com-
parisons within (red) and between (blue) individual long-tailed skuas Stercorarius longicaudus. Shaded areas represent 90 %
CI of bootstrapped median intertrack distances, including their overlap (darker red/blue). (b) Within-individual intertrack dis-
tances (orange), highlighting examples of large deviations from the previous year's track (blue). The red line shows the boot-
strapped median within-individual intertrack distance also shown in panel (a). (c¢) Fraction of tracks with a certain range of
intertrack distances. White represents high route consistency (<200 km); purple reflects large route deviations (>1000 km)

Within-individual intertrack distances outside staging
area kernels were larger than within-individual dis-
tances within the staging area kernels (Fig. 4; pymemc <
0.05), except for the comparison between southbound
migration and the North Atlantic staging area in au-

tumn (pmemce = 0.084). Considering staging kernels,
intertrack distances were larger in the North Atlantic
staging area during autumn (u = 414 km, 95% CI =
299-610 km) than in the staging areas south of 25° N
during early winter (U = 278 km, CI = 160-323 km,
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Fig. 4. Median intertrack distance within individual long-tailed skuas Sterco-
rarius longicaudus, and between individuals of each subspecies (light/dark
grey), calculated for the entire track comparison and for 6 segments (see 'Mate-
rials and methods: Consistency in movement patterns’). Note the log scale of
the y-axis. Bold horizontal lines represent medians, boxes encompass 50 % of
the values, and whiskers extend to the most extreme values. Above the figure,
only non-significant (N.S.) comparisons are indicated; all other comparisons are

significant (ppemc < 0.05)

Pmenmce < 0.001) and in the North Atlantic staging area
during northbound migration (1 = 255 km, 95% CI =
175-362 km, ppemc = 0.018), but not different in the
staging areas south of 25° N in late winter (u = 347 km,
95 % CI = 248-479 km, pymenmce = 0.324). Intertrack dis-
tances in staging areas were smaller during early win-
ter than during late winter (pyenmce = 0.016). In Fig. 3a,
intertrack distances plotted per day over the entire
year (irrespective of location) show that within-
individual intertrack distances are smallest and indi-
viduals thus especially consistent in space and time in
August (medians range from 200 to 340 km) and late
April/early May (when in the North Atlantic staging
area; medians range from 170 to 270 km), and in No-
vember (when in the winter quarters; medians range
from 160 to 210 km). In the months after November,
an increasing number of individuals diverted from
their previous year's route; for example in February,
about 40 % deviated more than 500 km and 20 % more

distance. Uninterrupted areas of
within-individual intertrack distances
below 500 km were apparent again in
the same main staging areas (albeit
somewhat more restricted). With a few
exceptions, intertrack distances were
larger outside these areas, in particular
between 0 and 40° N.

Of those individuals with at least 3 yr of data
(thus having 2 or more sets of intertrack distances),
many repeatedly showed intertrack distances around
300 km (Fig. 6). However, several individuals showed
small intertrack distances (high consistency) be-
tween 1 or 2 pairs of years and large intertrack dis-
tances (flexibility) between other set(s) of years.
Thereby, within-individual variance of overall medi-
an intertrack distances was inflated, causing low ICC
values (r = 0.286, 95% CI = 0.048-0.545). The same
was found for the parts outside the staging kernels
(southbound migration: r = 0.041, 95% CI = 0.010—
0.209; northbound migration: r = 0.248, 95% CI =
0.029-0.491) and within the staging kernels (south-
bound, North Atlantic staging area: r = 0.073, 95%
CI = 0.011-0.318, early winter/south: r = 0.225, 95%
CI = 0.025-0.508; late winter/south: r = 0.178, 95%
CI = 0.011-0.430; spring/north: r = 0.205, 95% CI =
0.025-0.427).
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Fig. 5. Median intertrack distance (a,b) within individuals and (c,d) between individuals for (a,c) July-December and (b,d)

January—June of long-tailed skuas Stercorarius longicaudus. Emphasis is put on grid cells (5° latitude x 5° longitude) with

median intertrack distance of less than 500 km by red outlines. Black stars indicate the breeding locations and blue outlined

polygons are 95 % utilization distribution kernels (see Fig. 1). High route consistency is especially achieved in southbound
migration both within and outside staging area kernels

DISCUSSION

We studied consistency of movement patterns at
large to meso-scales outside the breeding season in a
long-distance migratory seabird, the long-tailed skua
Stercorarius longicaudus, and generally found large
between-individual differences and relatively small

within-individual variation. As expected, individuals
were faithful to main staging areas in their south-
bound and northbound migration (off Newfoundland
in the central North Atlantic) and winter destination
(the Benguela Current off Namibia and South Africa),
where they generally followed their previous year's
route within about 200 to 300 km, while being more
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Fig. 6. Within-individual median intertrack distance in staging areas south of 25° N in (a) early winter and (b) late winter for in-

dividual long-tailed skuas Stercorarius longicaudus with at least 3 tracks, thus at least 2 sets of intertrack distances (x-axis la-

bels are individual ring numbers). Most individuals stayed within 500 km of their previous year's route in early winter. Partic-

ularly in late winter, some individuals showed large deviations in some years, but not in others. Individual 6149574 (far right;
also see Fig. 2i) switched each year in late winter between 2 distinct strategies

flexible during southbound and northbound migra-
tion when crossing large areas with low productivity.
Surprisingly, over the course of the winter, a minor
but increasing part of the individuals started to devi-
ate from their previous year's route. This shows an in-
triguing combination of general site fidelity and flexi-
bility in subsequent winter movements.

High winter area fidelity has been shown in several
seabird species from several families, using both GPS
and light-based tracking devices (Phillips et al. 2005,
Guilford et al. 2011, Muller et al. 2013, Fifield et al.
2014, McFarlane Tranquilla et al. 2014, Yamamoto
et al. 2014). With generally high route consistency
within staging areas throughout the winter months,
long-tailed skuas fit to this pattern, although their
movements are often not restricted to a single, well-
defined area (i.e. strategy of itinerancy). The gener-
ally high route consistency indicates that, despite a
strategy of itinerancy, similar itineraries are followed
from one year to the next; thus, although individuals
use different staging sites throughout the winter,
they use the same staging sites in different years.
These staging sites are well-known for their high
productivity: the Benguela Current system, offshore
Angola, the Gulf of Guinea, the Canary Current and
the recently discovered hotspot for seabirds in the
central North Atlantic (Longhurst 2006, Chavez &
Messié 2009, Stenhouse et al. 2012, Grecian et al.

2016). This is in line with our expectation that area
fidelity is favoured when individuals target areas
with predictably high productivity.

However, from late December, an increasing num-
ber of individuals deviated from the previous year's
routes (Figs. 3 & 6). Much of this variation was due to
differences in timing (see Fig. A1 and the Supple-
ment), but even when controlling for this, ca. 20 % of
the tracks deviated more than 1000 km from the pre-
vious route in January (Fig. 3c). In extreme cases, the
deviations included a transoceanic flight from the Ben-
guela Current to the Falkland Current (ca. 5200 km).
The ability to switch wintering areas, sometimes at
huge spatial scales, has been reported for a small
number of seabird species (e.g. up to 7000 km in
Cory's shearwater Calonectris borealis and 1300 km
in streaked shearwater C. leucomelas; Dias et al.
2011, Yamamoto et al. 2014). One of the long-tailed
skuas repeated the transoceanic switch even twice
(in its second and fourth year of tracking; Figs. 2i & 6)
using similar routes and destination, indicating this
leap was not just an accidental displacement by
severe weather conditions, but likely based on previ-
ous experience. In both years, it made the shift after
arrival in its usual winter range, the Benguela Cur-
rent. The same pattern was observed in other indi-
viduals, in which deviations increasingly occurred
from late December onwards, i.e. after arrival at the
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wintering areas. This suggests that individual skuas
check local conditions at a familiar wintering site be-
fore deciding where to go during the following
months. In contrast, some Cory's shearwaters directly
travelled to a different wintering area than in the
previous year, apparently without knowing the con-
ditions at either wintering site (Dias et al. 2011).

Based on individuals with 3 to 5 yr of tracking data,
we conclude that individuals do not show the same
degree of consistency between each set of subse-
quent years. Instead, individuals with dissimilar
tracks between 2 years could have very similar tracks
between other years (Fig. 6). This was already hinted
at by Dias et al. (2011), who suggested that ‘each
individual may have one (or maybe several) ‘pre-
ferred' migratory strategies (in terms of route and
wintering site), but maintains the capacity to choose
alternatives.’ We can now confirm the intriguing idea
of co-occurrence of site fidelity and site-switching
within the same individual. In conjunction with the
increase in route deviations after arrival at the win-
tering grounds, this likely indicates that deviations
from earlier routes represent individuals' rapid re-
sponses to local conditions, for example, weather or
foraging conditions (including competition) when
arriving in the main wintering area.

What determines whether individuals are faithful
to their wintering site or shift over small or large dis-
tances? While possibly modulated or constrained by
intrinsic factors (genetic background, sex, experi-
ence, fat reserves), high variation in individual move-
ment patterns likely results from declining availabil-
ity, increased patchiness and decreased predictabil-
ity of resources (Mueller & Fagan 2008), or deterio-
rating weather conditions preventing efficient forag-
ing. Dias et al. (2011) explored whether site switches
of a small number of individuals could be explained
by sex, age or reproductive success, or by changes in
sea surface temperature and chlorophyll a, but found
no clear links. Also, what exactly caused the move-
ment deviations observed in long-tailed skuas in this
study remains unclear. At-sea foraging behaviour of
long-tailed skuas is poorly known, but most authors
agree that they probably mostly feed by themselves
(e.g. by surface pecking), only rarely kleptoparasitiz-
ing other seabirds, as is common in other skua spe-
cies (Lambert 1980, Cramp & Simmons 1983, Veit
1985, Wiley & Lee 1998). As skuas are unable to dive
deep, long-tailed skuas likely depend on mecha-
nisms bringing zooplankton or fish at or very close to
the surface. Many individuals aggregated in early
winter in the southern Benguela Current. Here, edges
of Agulhas rings (bodies of warm water ‘leaking’

from the Agulhas Retroflection) provide feeding
opportunities for seabirds (Camphuysen & van der
Meer 2001, Camphuysen 2007), possibly including
long-tailed skuas (cf. Ryan 1989). Whereas the occur-
rence of Agulhas rings within this large area seems
predictable, they provide localized, slowly moving
foraging areas, resulting in irregular patterns in
inter-annual variation of ocean productivity (Chavez
& Messié 2009). In addition, sea surface temperature
increases and primary productivity of the western
part of the Benguela declines during winter (Hard-
man-Mountford et al. 2003, Longhurst 2006, O'Mal-
ley 2016). The skuas seem to respond to this by mov-
ing south- or eastwards within the Benguela, into the
Agulhas or Angola Current, or to the Canary Cur-
rent. Particularly these late-winter movements are
consistent between most, but differ between some
years and cause the observed increase in within-
individual intertrack distance from mid-winter on-
wards. While the onset of these movements may be
related to the decrease in productivity, it is unclear
what determines the (variation in) flexibility in sub-
sequent destinations. One might argue that flexibil-
ity in late-winter movements is promoted by a lower
predictability of resources in late winter. Whether
this is really the case in our long-tailed skua example
is questionable; targeted areas include both areas
where they may use wind-driven upwelling areas
along shelf-edges (off Angola and Namibia) and
areas with eddies and thermal fronts (Agulhas Retro-
flection) (Ryan 1989), and such habitats do not seem
to be notably less predictable in feeding conditions
than, for example, the Benguela Current during early
winter. Future studies should aim to link positional
data with (ephemeral) oceanographic features (Tew
Kai et al. 2009, Scales et al. 2014), backed up by field
studies of at-sea feeding behaviour and diet. Examin-
ing at what conditions individual movement patterns
start to deviate offers a promising opportunity to
study movement decisions of seabirds.

In line with our expectations, long-tailed skuas
showed lower consistency in migration route than in
staging area itineraries. Like in many seabird spe-
cies, migratory routes of long-tailed skuas are closely
linked to large-scale oceanic wind patterns. They fol-
lowed routes that provide tail- or sidewinds, except
in the second half of southbound migration when
using a narrow corridor hugging the contours of
western Africa—against the prevailing wind but
avoiding an area with stronger headwinds in the cen-
tral South Atlantic. The same pattern is shown by
Sabine's gulls Xema sabini and part of the Arctic
terns Sterna paradisaea originating from the North
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Atlantic (Egevang et al. 2010, Stenhouse et al. 2012),
but dissimilar to most Cory's shearwaters which take
a westerly roundtrip offering more profitable winds
(Felicisimo et al. 2008), a route taken by only a small
number of the skuas in this study. Northbound
migration towards the North Atlantic staging area
occurred over a much broader front, in particular
north of the equator, where birds likely experienced
easterly winds over a large area. Despite this differ-
ence in longitudinal width of the south- and north-
bound migration, individuals showed a similar de-
gree of consistency, albeit with large variation,
generally staying within 300 and 1300 km of their
previous year's route. High consistency was ob-
served in particular after departure from the Bengu-
ela to the northwest, while more flexibility was
shown in the North Atlantic south of the North
Atlantic stopover. Higher consistency in northbound
than in southbound migration route was also ob-
served in the much shorter migration of streaked
shearwaters in the western Pacific (Yamamoto et al.
2014).

Error of position estimates from light-based geolo-
cation using the threshold method (Ekstrom 2004)
are typically some 100s of km, which precludes us
from any conclusions regarding consistency at
smaller scales. Inaccuracy of latitude estimates are
largest in proximity to the equinoxes (Phillips et al.
2004, Lisovski et al. 2012) and could lead to noise in
derived measures. Indeed, Fig. 3a shows increased
variation in median intertrack distances just before
and after each equinox, but we do not exclude the
possibility of an effect of data gaps around equi-
noxes. Nevertheless, 2 arguments suggest that the
route consistencies as presented here are conserva-
tive and therefore our conclusions robust. First, con-
sidering that intertrack distances of 2 identical routes
would reflect the combined error of the position esti-
mates of both tracks, most within-individual inter-
track distances are remarkably close to the typical
error of +185 km of single-position estimates (Phillips
et al. 2004). Second, intertrack distances were calcu-
lated as point-to-point measurements. Measuring the
distance from each position in a focal track to the line
between 2 closest positions in the comparison track
would lead to even smaller distances, in particular if
2 positions of the comparison track are far apart (e.g.
when the bird was migrating).

This study highlights that long-tailed skuas show
consistency in non-breeding movements, but, at the
same time, a fair amount of flexibility during specific
parts of the annual cycle, in particular the late winter
period. Variation in itineraries between and within

individuals suggests that these birds have the ability
to adjust to environmental change. However, as we
have a poor understanding about how individual
migration patterns arise in the first place, specifically
the relative roles of genetics and learning during the
ontogeny of individual patterns, and, in addition, to
what extent individual migration patterns change
over an individual's lifetime (reversible state effects;
Senner et al. 2015), it remains unclear how flexible
long-tailed skuas really are, and thus how quickly
they can respond to environmental change. That an
individual skua followed 2 distinct itineraries that
were both repeated in later years (Fig. 2i), strongly
suggests extensive spatial memory. This spatial
memory may have its origin in explorative move-
ments during early life (Pulido 2007, Guilford et al.
2011, Senner et al. 2015), which would enable long-
tailed skuas to respond to changes in the distribution
of favourable areas relatively quickly, assuming that
explorative movements allow for discovery of novel
areas. Crucially, the genetic background, as well as
the occurrence and extent of exploration behaviour
in the first years of life and subsequent life stages,
need to be demonstrated for the far majority of sea-
birds (but see Kooyman et al. 1996, Weimerskirch et
al. 2006, Péron & Grémillet 2013), including long-
tailed skuas.
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ABSTRACT: Seabirds show remarkable variability in migration strategies among individuals and
populations. In this study, we analysed 47 migrations of 28 brown skuas Catharacta antarctica
lonnbergi breeding on King George Island in the Maritime Antarctic. Brown skuas from this pop-
ulation used a large area during the non-breeding period north of 55°S, including parts of the
Patagonian Shelf, Argentine Basin and South Brazil Shelf, areas which are characterised by high
levels of marine productivity. However, individual birds utilised only a subset of these areas,
adopting 1 of 4 distinct migration strategies to which they were highly faithful between years, and
showed high repeatability in departure and arrival dates at the breeding ground. Although they
spent the majority of the non-breeding season within a particular region, almost all individuals
used the same area in the late winter, exploiting its seasonal peak in productivity. Overall, these
results indicate consistent individual variation in migration strategies that may reflect a combina-
tion of genetic control and individual experience, but with considerable flexibility to shift distribu-

tion in response to prevailing environmental conditions.

KEY WORDS: Catharacta antarctica lonnbergi - Seabird ecology - Light-level geolocation -
Non-breeding distribution - Individual consistency - Ocean primary productivity - Migratory
connectivity

INTRODUCTION standing of the ecology of many species, and how

Migratory seabirds spend much of the year at sea,
far from their breeding grounds, yet have tradition-
ally been studied much more intensively during the
breeding than the non-breeding season. However, a
growing body of literature demonstrates that these
temporally and often geographically distinct periods
of the annual cycle are inextricably linked (Harrison
et al. 2011). This bias in research towards studies
focussing on the breeding season limits our under-
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individuals and populations are affected by major
stressors such as rapid environmental change (Adahl
et al. 2006, Small-Lorenz et al. 2013).

Recent advances in tracking technologies (Bridge
et al. 2011) have facilitated numerous studies invol-
ving tracking individuals over an extended period
of time. This development allows investigation of
spatiotemporal consistency in migration strategies
within and among individuals and populations (e.g.
Phillips et al. 2005, Dias et al. 2011). Although the
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general direction of migration seems to be largely
determined by genetics or, in some species, cultural
inheritance (Berthold 2001, Mueller et al. 2013), move-
ment patterns of individuals and populations also
respond to factors such as food availability (Shealer
2002, Karnovsky et al. 2003). However, prey avail-
ability in marine ecosystems is generally charac-
terised by varying degrees of temporal and spatial
predictability (Weimerskirch 2007) and hence it can-
not be assumed that all areas will be favourable for a
particular species in every year. This could ultimately
lead to variation in individual migration patterns of
seabirds at some spatial scale across years. Indeed,
although most species show high individual consis-
tency in non-breeding destinations at a large spatial
scale (Phillips et al. 2005, Fifield et al. 2014, Muller et
al. 2014), there are exceptions; in addition, in almost
all species there is extensive variation both among
and within individuals in routes, use of staging areas
and timing (Quillfeldt et al. 2010, Dias et al. 2011,
McFarlane Tranquilla et al. 2014).

In this study, we analysed the migration strategies
of individual brown skuas Catharacta antarctica
lonnbergi breeding on the South Shetland Islands in
the Maritime Antarctic. Migration routes and non-
breeding areas were derived using light-level geolo-
cators (also termed global location sensors or GLS
loggers), and our dataset included repeated tracks
from individuals over 2 to 3 yr. Brown skuas are long-
lived and highly opportunistic top predators, with a
circumpolar breeding distribution on subantarctic
islands and the Antarctic Peninsula (Furness 1987,
Ritz et al. 2008). To date, the only detailed distribu-
tion data available for brown skuas during the non-
breeding period are for birds from the population at
South Georgia, migrating to waters between the
northern extent of the Subtropical Front and the
southern boundary of the Antarctic Circumpolar
Current, and between the Argentine and Agulhas
(Phillips et al. 2007, Carneiro et al. 2016). In contrast,
the limited data for the closely related Falkland
skuas C. a. antarctica, tracked in different years, sug-
gest a non-breeding distribution mainly in sub-
antarctic waters around the central Patagonian shelf-
break (Phillips et al. 2007).

Given the lack of knowledge of the non-breeding
ranges of brown skuas from the South Shetland
Islands, the adjacent southern population, and the
inclusion in our dataset of repeated migration tracks
from the same individuals in multiple years, the aims
of the study were 2-fold. Firstly, we aimed to reveal
the spatiotemporal non-breeding distribution of the
tracked population, the degree of variation among

individuals, and the effects of sex, year and previous
breeding performance. Secondly, we aimed to quan-
tify individual consistency in annual migration strate-
gies. In addition, we used activity (immersion) data
recorded by the loggers, and remotely sensed data
on net primary production to examine the correlation
between this proxy for food availability, and the
movement and activity patterns of individual birds.

MATERIALS AND METHODS
Logger deployment and retrieval

Fieldwork was carried out on adult brown skuas
at King George Island (Fildes Peninsula, 62°19'S,
58°95'W) in the Maritime Antarctic. A total of 46
geolocator-immersion loggers were deployed on 33
individuals (which at the time were of unknown sex)
over the course of 3 breeding seasons (2006/2007 to
2008/2009). Three types of loggers (manufactured by
the British Antarctic Survey) were used in this study:
MKS5 (n = 20), MK9 (n = 22) and MK15 (n = 4). Total
weights were 6.4, 5.3 and 5.3 g, respectively, which
included the device, aluminium ring and cable ties
used for attachment (together with metal ring of 3 g
used for identification, corresponding to ~0.6 % of the
mean body mass). Besides recording light intensity
over time, all loggers tested for saltwater immersion
every 3 s and stored the sum of positive tests at
10 min intervals, resulting in values between 0
(entirely dry) and 200 (entirely wet). Birds were
recaptured in the subsequent season, and in 11 cases
the loggers were replaced by a new device; these
devices and others from the initial deployments were
retrieved in the third season. A blood sample was
taken from each bird (~50 pl), stored at —20°C, and
later used to determine sex from DNA (Fridolfsson &
Ellegren 1999). All individuals were monitored regu-
larly in the pre- and post-migratory season (from
early December to March) to determine breeding
status and performance (i.e. success vs. failure).

Departure and arrival date

Since brown skuas switch from a predominantly
terrestrial lifestyle to almost exclusively marine habi-
tat after leaving the breeding site (Phillips et al.
2007), departure and arrival dates at King George
Island were identified by visual inspection of immer-
sion data. For individuals lacking immersion data
because of logger malfunction, these dates were
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identified from the length and frequency of shading
of the light sensor during daylight, which is substan-
tially higher when skuas spend time sitting on land at
the breeding ground. The duration of the non-breed-
ing period was based on departure and arrival dates.
Some individuals also went on a pre-laying exodus
within a few weeks of first return to the colony.

Movement pathway analysis

Positions during the non-breeding season were
estimated from raw light intensity data using the
threshold method (Lisovski et al. 2012). Twilight
events (i.e. sunrise and sunset transitions) were
defined using the R package '‘BAStag’ (Wotherspoon
et al. 2013a) based on a light intensity threshold of
2.5. Twilight times that were clearly suspect because
of shading of the sensor (i.e. >30 min difference from
the previous or subsequent day) were discarded, and
the time interpolated with respect to the surrounding
twilights. This approach was applied to between 5
and 10 % of all twilights during the annual migration
of each individual. Locations from the breeding
period were excluded from subsequent analyses. We
used a Bayesian framework to refine the initial,
rough positions estimated from the threshold method
and to derive uncertainty estimates. The R package
'‘SGAT' (Wotherspoon et al. 2013b) uses Markov
Chain Monte Carlo (MCMC) simulations allowing
the incorporation of a spatial probability mask, prior
definition of the error distribution of twilight events
(twilight model) and a flight speed distribution to
refine location estimates (for detailed information see
Sumner et al. 2009 and Lisovski et al. 2016). The twi-
light model should reflect the expected error in
detecting the real time of sunrise and sunset. Since
brown skuas spend a substantial amount of time sit-
ting at the breeding site, which obscures the light
sensor, we could not use twilight times from a known
location (i.e. breeding site) to parameterise the twi-
light model. We therefore used a rather conservative
prior (log-normal distribution: meanlog = 2, sdlog =
1.2) describing a large variation in the discrepancy
between the real and recorded twilight events. The
movement behaviour was modelled assuming that
over the course of the non-breeding periods, brown
skuas are sedentary for the majority of the time (high
likelihood of very slow movement speeds) while
allowing for occasional fast movements (~80 km h~1)
during migration (gamma distribution; shape = 0.7,
scale = 0.05). The spatial mask was based on the
assumption that the tracked individuals avoid land

(10 times lower probability of occurrence on land
compared to sea) and that the spatial range was
between 10 and 70°S, and 85 and 20°W (based on
locations derived using the threshold method).

The threshold method requires a zenith angle to
estimate locations, which is usually derived using
light intensity recordings from tracked animals of
known distributions, or fixed loggers. As these data
were unreliable or unavailable for this study, we
used an alternative approach, the 'Hill-Ekstrom cali-
bration’ (see Lisovski et al. 2012) to estimate the right
zenith angle for each annual migration track. First,
for all tracks, initial locations were estimated using a
zenith angle of 95° (i.e. sun elevation angle of -5°).
Next, using the initial locations, a set of MCMC sim-
ulations (drawing 2400 samples) was performed
using a range of zenith angles between 94 and 96°.
The median path for each zenith angle and a total of
2400 chains were then calculated. We then choose
the zenith angle that minimised the variance in lati-
tude estimates during periods when the tracked birds
were largely sedentary within their non-breeding
range. The derived zenith angles varied between
individual tracks, and ranged from 94.5 to 95.7°.

Using those zenith angles, a complete MCMC sim-
ulation was performed on each individual annual
track. An initial 2000 samples were drawn and dis-
carded to allow for both burn-in and tuning of the
proposal distribution, i.e. to find an initial path that
matches the model assumptions. A final 4000 sam-
ples were than drawn to describe the posterior distri-
bution. Convergence of chains, i.e. whether 2 inde-
pendent simulations produce the same result, was
evaluated by visual inspection by comparing the
median tracks. The final run provided 4000 chains
of possible migration pathways that satisfied the
defined sunrise and sunset times, their error distribu-
tion, the movement behaviour and the spatial mask.
The set of chains were used to generate time-spent
maps illustrating the relative probability distribution
of an individual at a given time or period, and to cal-
culate most likely tracks.

Activity analysis

Saltwater immersion data recorded by the logger
were used to determine activity patterns of brown
skuas using the web-based program Actave.net
(Mattern et al. 2015). Values of 0 (entirely dry), 1 to
199, and 200 (entirely wet) in each 10 min period
were categorised as either ‘flight’ (as skuas remain at
sea during the non-breeding period), ‘foraging’' or



216 Mar Ecol Prog Ser 578: 213-225, 2017

‘sitting on water’, respectively, assigned to daylight
or darkness periods based on nautical twilight hours
and summarised accordingly (see Mattern et al.
2015). Although some intermediate values (from 1 to
199) will reflect non-foraging behaviour, in general
this categorisation is assumed to provide a reason-
able indication of foraging activity among seabirds
(McKnight et al. 2011, Cherel et al. 2016).

Spatial data analysis

We used R (R Core Team 2015) to manipulate and
analyse all data. A Lambert Azimuthal Equal Area
projection was used for all spatial analyses and map-
ping. Due to the large error distribution of the twi-
light times, the MCMC simulation did not perform
well in correcting location estimates during the
period of the equinox (1 March to 22 April, and 22
August to 9 October), and these locations were there-
fore excluded from all analyses.

Movement patterns within the non-breeding range
were analysed in the context of the Marine Ecore-
gions of the World (MEOW), biogeographic areas of
relatively homogenous and distinct species composi-
tion (for details, see Spalding et al. 2007). However,
MEOW only characterises costal and shelf areas, and
we therefore added the ‘Argentine Basin' to be able
to categorise the entire non-breeding range of the
tracked brown skuas. For each position on the indi-
vidual median tracks (i.e. the most likely track) we
extracted the corresponding MEOW. To quantify the
relative use of the various MEOW by each individual,
the proportions of time spent inside each region
between 22 April and 22 August was calculated.
These proportions were used to group individual
tracks based on the similarity in the use of each
MEOW, using a cluster analysis with Euclidean dis-
tance (R package 'vegan’; Oksanen et al. 2015). To
exclude individual effects, the analysis was initially
performed using the first track of each individual
only. Subsequently, and to evaluate the robustness of
the groups, all 47 annual tracks were analysed to-
gether followed by a repeated analysis using Ward's
method (Oksanen et al. 2015).

The relative probability distributions (i.e. time-
spent maps) between 22 April and 22 August were
used to investigate the spatial overlap of movement
paths among and within individuals. Each individual
relative probability distribution (Dxy) corresponded
to a raster with XY grid cells and a resolution of 39.3
x 55.6 km. The values were normalised such that %,
Dyy = 1. The degree of overlap (O) between 2 tracks

(@ and b) was defined as the sum of the minimal value
over all shared (overlapping) grid cells according to:

O,p = Z,Z, min(Dxy, | Dxys) (1)

This calculation results in 0 if the 2 tracks share no
common grid cell and in 1 if the 2 probability distri-
butions were 100 % identical. All combinations of the
47 annual tracks were calculated. The resulting
degrees of overlap were arcsine square root trans-
formed to meet statistical assumptions.

To reveal temporal trends in marine productivity
(as a proxy of the seasonal dynamics of food avail-
ability at a mesoscale level), and to test for relation-
ships with individual distributions, timing of move-
ments and activity patterns of the tracked skuas, we
downloaded net primary production data (NPP) from
www.science.oregonstate.edu/ocean.productivity/
index.php (accessed 5 August 2014), in 8 d intervals
and a resolution of 0.17°. Individual brown skua
probability distributions were pooled into 8 d inter-
vals to match NPP data format and normalised such
that £,%, Dxy = 1. If the matched NPP data had miss-
ing values corresponding to >50 % of the probability
distribution, the 8 d interval was excluded from the
analysis. The relative probability distributions were
then used to weight the NPP data of each correspon-
ding grid cell according to:

NPPsum = 2:xz:y (DXY X NPPXY) (2)

Statistical analysis

We used linear mixed-effect models (R package
‘Ime4’; Bates et al. 2014) to quantify the effects of sex,
breeding performance (i.e. successful [at least one
chick fledged] or unsuccessful in the current season)
and migration strategy on the subsequent timing of
migration (departure date, arrival date, duration) and
individual activity patterns (foraging activity, num-
ber of dry bouts and duration of dry bouts). To avoid
pseudoreplication, individual identity was included
as a random intercept. Two individuals with behav-
iours very different to the others were excluded from
specific analysis: ID 108276 departed exceptionally
early (15 January) in 2008, and was excluded from
the analysis of departure date and duration, and ID
139514 spend several (dry) nights on a vessel or on
land, biasing the activity data. To correct for tempo-
ral autocorrelation in the model testing for an effect
of prey predictability (i.e. NPP) on activity pattern,
the random effect was specified as days since the
start of the non-breeding season each year (hereafter
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‘day of the year') nested within individuals. p-values
were calculated using the ‘ImerTest' package (Kuz-
netsova et al. 2015). A linear mixed-effect model with
the binary fixed factors (1 as ‘'same’ and 0 as 'differ-
ent') ‘'same sex’, 'same year', ‘'same breeding per-
formance' and ‘same individual', and the random fac-
tor ‘individual’ was used to test for differences among
and within groups in the spatial overlaps of the prob-
ability distributions.

Individual repeatability, i.e. the intraclass correla-
tion coefficient, which allows the quantification of
variance among and within individuals (Lessells &
Boag 1987), was calculated for timing of migration
and mean activity metrics obtained in different years.
Linear mixed-effect models with individual as ran-
dom effect and year as fixed factor were fitted for
each sex. Due to the small sample size, models fitted
to the activity metrics were not separated by sex,
and sex was instead included as a fixed factor. The
adjusted repeatability value, corresponding confi-
dence interval and p-value were calculated using the
R package 'rptR’ (Nakagawa & Schielzeth 2010).

RESULTS
Logger retrieval details

DNA sexing revealed that the loggers were de-
ployed on 33 females and 13 males. A total of 42
(91%; 31 females, 11 males) of the loggers were
retrieved, which provided data on 47 annual tracks of
28 individuals (20 females, 8 males) between 2007
and 2010, including migrations of the same indivi-
duals over 2 (n = 13) or 3 (n = 3) non-breeding sea-
sons. Additionally, saltwater immersion data were re-
corded for 35 of the 47 annual tracks.

Spatiotemporal distribution

During the non-breeding period, the tracked
brown skuas were widely distributed north of their
breeding sites, over parts of the Patagonian Shelf, the
Argentine Basin and, to a lesser extent, the South-
ern Brazil Shelf (Fig. 1a). This distribution includes
regions with heterogeneous levels of productivity:
subantarctic, mixed subantarctic-subtropical and sub-
tropical, and open shelf waters. The core area of the
distribution overlapped with the Patagonian shelf-
break front, the confluence zone of the Falkland and
Brazil currents, and offshore of the Rio de la Plata
estuary.

Single individuals used distinct portions of the
entire area, revealing characteristic spatiotemporal
patterns (Fig. 2). Based on the time spent in each
MEOW, the annual tracks could be grouped in 4 mi-
gration strategies. Applying cluster analyses with dif-
ferent linking methods on all annual tracks, or only

70°W 40°W

60°W 50°W

Mar-Aug log NPP

Sep-Oct

Fig. 1. (a) Density distribution of 28 brown skuas Catharacta
antarctica lonnbergi from King George Island (black star)
during the non-breeding period from 2007 to 2010. Black
lines: approximate locations of the Subtropical Front (STF),
Subantarctic Front (SAF) and Polar Front (PF) based on Orsi
et al. (1995); grey line: 500 m bathymetric contour, indica-
ting the Patagonian shelf-break. (b) Mean net primary pro-
duction (NPP; in mg C m™2 d~!) between the mean departure
date of brown skuas (17 March) and August from 2007 to
2010, and (c) NPP (in mg C m~2 d~!) between September and
the mean arrival date of brown skuas (31 October) from 2007
to 2010, both overlaid by the density distribution (contour
lines: 20, 40, and 60 %) of brown skuas in the same period
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the first from each individual, distinguished up to
5 groups. However, 3 groups were always identified
as clearly distinct, independent of the methods and
data background: (1) a group of individuals that
utilised the 'Argentine Basin' at the end of April and
in May, and, for a shorter period, the 'Uruguay-
Buenos Aires Shelf’, which corresponds to the use of
the Brazil-Falklands confluence. Subsequently, at the
beginning of June, these birds moved to the Southern
Brazil Shelf, where they primarily utilised the ‘Rio
Grande' and partly ‘Southeastern Brazil'. These an-
nual tracks were assigned to the migration strategy
‘South Brazil Shelf’ (SouthBrazil), and consisted of 3
individuals (11%). (2) Individuals that mainly used
the 'Uruguay—-Buenos Aires Shelf' between April and

Marine Ecoregions of
the World (MEOW)

Southeastern Brazil

Rio Grande
Uruguay-Buenos Aires Shelf
Rio de la Plata

North Patagonian Gulfs
Patagonian Shelf

Falklands

Argentine Basin

Fig. 2. (a) Location of the most likely position within the Mar-
ine Ecoregions of the World (MEOW; following Spalding et
al. 2007, supplemented with the ‘Argentine Basin' to cover
the whole non-breeding range) of 28 brown skuas Cathar-
acta antarctica lonnbergi from King George Island during
the non-breeding period. Brown skuas were tracked in 4 yr
(2007 to 2010); 16 individuals in 2 or 3 consecutive years. In-
dividuals are grouped by 4 migration strategies based on
cluster analysis, including the proportions of annual tracks
in the MEOW. (b) Proportional distribution of all tracks
within the MEOW. Note the use of different MEOW be-
tween April and August, whereas almost all individuals
used the same region in October and November. No reliable
positions could be calculated around the equinoxes (1 March
to 22 April, and 22 August to 9 October). Migration strate-
gies: ‘South Brazil Shelf' (SouthBrazil), ‘North Patagonian
Shelf/Argentine Basin' (NorthPata), ‘Rio de la Plata’ (Rio-
Plata), ‘South Patagonian Shelf' (SouthPata). (c) Extent of
the MEOW used by the tracked skuas

September as well as the ‘Rio de la Plata'. These
tracks were assigned to the migration strategy ‘Rio de
la Plata’ (RioPlata), including tracks of 3 individuals
(11%). (3) Individuals grouped across the southern
Patagonian Shelf, e.g. the 'North Patagonian Gulfs'
and 'Patagonian Shelf', between April and July to Au-
gust. These tracks were assigned to the migration
strategy ‘South Patagonian Shelf' (SouthPata) and
consisted of 4 individuals (14 %). The cluster analysis
could not clearly separate the remaining 2 groups,
and assignment of tracks was dependent on method
and data background. (4) Individuals that mainly used
the 'Argentine Basin' and the ‘Uruguay—-Buenos Aires
Shelf'. Most of these birds moved frequently between
these 2 major regions and some were also distributed
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partly over the southern Patagonian Shelf. These
tracks of 18 individuals (64 %) were assigned to mi-
gration strategy 'North Patagonian Shelf/Argentine
Basin' (NorthPata).

In October, the differences between individual
strategies diminished (Fig. 2b), and almost all skuas
moved into a highly seasonal and productive area:
the transition zone between the ‘Argentine Basin’,
the '‘Patagonian Shelf' and the ‘Falklands' (Fig. 1c).
However, 3 individuals (IDs 127245, 108272 and
156143) did not use this area during this period, but
rather were distributed east from the Falkland
Islands over mixed water masses of the Antarctic
Polar Front and the Subantarctic Front. One other
individual (ID 156143) travelled as far east as the
waters north of South Georgia.

On 9 occasions, 8 individuals (5 females, 3 males)
performed a pre-laying exodus. These birds de-
parted from King George Island after a median of 6 d
(min. = 1 d, max. = 36 d) and their first arrival dates
were on average 1 wk before the arrival of birds that
did not make a pre-breeding exodus. Seven individ-
uals flew back to the north or east of the Falkland
Islands, whereas the others remained in the proxim-
ity of King George Island or performed an 8 d trip to
the Drake Passage.

The degree of overlap of the probability distribu-
tions was significantly larger (22 + 0.3 % SE, p < 0.001)
within individuals than among individuals (Fig. 3).
Only 1 individual (ID 139679) showed an overlap of
just 44 %, whereas the within-individual overlap for
all the other tracked skuas was 60 to 95 %. This signif-
icant overlap in movement paths was reflected in the
very high consistency within individuals with respect
to their migration strategy (Fig. 2). This was higher in
individuals using 'South Patagonian Shelf’, ‘Rio de la
Plata’ and 'South Brazil Shelf' than in individuals that
adopted the ‘North Patagonian Shelf/Argentine Basin'
strategy. There was no significant effect of sex (1.6 +
1.0% SE, p=0.117), year (0.3 + 1.0% SE, p = 0.796) or
previous breeding performance (0.4 + 1.0% SE, p =
0.691) on the distribution of the tracked birds.

Timing of migration

The mean departure date from King George Island
was 17 March (+12 d SD; 25 February to 13 April, n =
28). Females departed around 2 to 3 wk earlier than
males (17.38 + 2.75 d SE, t=6.32, p < 0.001; Fig. 4a).
‘SouthPata’ individuals departed significantly earlier
than ‘NorthPata' (17.7 +3.47 d SE, t=5.08, p < 0.001),
‘RioPlata’ (11.0 + 4.96 d SE, t = 2.22, p = 0.03) and
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Fig. 3. Overlap among and within individual probability dis-

tributions of 28 brown skuas Catharacta antarctica lonn-

bergi from King George Island during the non-breeding pe-

riods from 2007 to 2010, including annual migrations of the

same individuals over 2 (n = 13) or 3 (n = 3) yr. Line: median;

box: 25th—75th percentiles; whiskers: 5th—-95th percentiles;
circles: outliers
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Fig. 4. (a) Departure and return dates of brown skuas Cathar-
acta antarctica lonnbergi (20 females, 8 males) from King
George Island during 2007 to 2010. Boxplot limits as in Fig. 3.
(b) Marine foraging activity (20 d moving average and 95 %
CI) of 16 female (red) and 7 male (blue) brown skuas,
throughout the years 2007 to 2010. Foraging activity was ap-
proximated by saltwater immersion data with intermediate
(wet and dry) 10 min intervals. Note that brown skuas fed
mainly on terrestrial prey during the breeding season and
switched to a pelagic distribution after they left the breeding
site. Dashed lines: median departure and return dates
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‘SouthBrazil' individuals (11.8 +4.50d SE, t=2.6,p =
0.01). Besides the significant differences between
these particular strategies, departure date was not
influenced by previous breeding performance (1 or 2
chicks fledged vs. unsuccessful; 3.41 + 2.39d SE, t=
1.42, p = 0.16) or year (-0.61 + 1.21 d SE, t=0.5, p =
0.61). The repeatability value of the departure date
was moderate in both sexes (Table 1).

Brown skuas returned to King George Island
around 31 October (10 d; 17 October to 23 Novem-
ber, n =28). The arrival date did not differ significantly
between sexes (1.46 +4.30d SE, t=0.34, p=0.73), but
was highly repeatable at the individual level (Table 1),
and there were significant differences between years
(2007-2010: 2.07 £+ 0.80d SE, t=2.57, p=0.016).

The mean (+SD) duration of the non-breeding
period was 228 d (17 d; 197 to 272 d, n = 28), and
was highly repeatable within individuals (Table 1).
Males spent less time away from the breeding site
than females (18.37 £ 5.21 d, t=3.52, p =0.001) inde-
pendent off year (2.53 £ 1.7 d, t=1.48, p = 0.14) and
breeding performance (6.04 + 3.7 d, t = 1.62, p =
0.11). Additionally, ‘SouthPata’ individuals had a sig-
nificantly shorter non-breeding period (20.2 + 6.68 d,
p = 0.006) than ‘NorthPata' individuals.

Activity patterns

During the non-breeding period, tracked brown
skuas spent a large proportion of the day sitting on

water (females: 57 +4.40% SD, n = 16; males: 55.38 =
6.08% SD, n = 7) and a much smaller proportion in
flight (females: 14.71 + 3.45% SD, n = 16; males:
12.46 + 4.10% SD, n = 7). The length of time cate-
gorised as foraging was significantly higher in males
than females (0.93 + 0.30 h SE, t = 3.06, p = 0.006;
Table 1), and was concentrated mainly during the
day (females: 67.21 + 8.08 % SD, n = 16; males: 69.45
+ 8.45% SD, n = 7) rather than at night (females:
22.34 + 5.98% SD, n = 16; males: 21.37 + 4.70% SD,
n = 7). Foraging activity differed significantly be-
tween years (-0.20 = 0.07 h SE, t = 2.61, p = 0.009)
and over the non-breeding period (0.07 = 0.009 h SE,
t = 8.06, p < 0.001), but there was no significant
repeatability within individuals (Table 1). Within the
non-breeding period, the foraging activity peaked in
early October (Fig. 4b), before the brown skuas
returned to King George Island.

The number of flight bouts per day did not differ
significantly between males (4.16 + 1.02 SD) and
females (3.86 = 0.65 SD) (0.35 £ 0.24 SE, t=1.44,p =
0.16). Day of the year had a significant effect (0.16 +
0.01 h SE, t=9.02, p < 0.001) on the number of flight
bouts, but there was no effect of year (-0.07 + 0.08 h
SE, t=0.83, p = 0.40). However, the number of flight
bouts was not repeatable within individuals (Table 1).
In contrast, there was a significant effect of sex (fe-
males: 63.53 = 19.04 min SD, males: 45.97 + 8.45 min
SD; difference: 15.10 + 7.10 min SE, t=2.11, p = 0.049)
and year (-5.81 + 2.16 min SE, t = 2.68, p = 0.009) on
the duration of flight bouts, which was independent of

Table 1. Migration characteristics (mean departure date, arrival date and duration) and activity patterns (foraging activity,
number and duration of flight bouts) of brown skuas Catharacta antarctica lonnbergi during the non-breeding periods from
2007 to 2010, and their individual repeatability (R, lower and upper 95 % ClIs and p-values). Mean values were calculated us-
ing only data from the first migration track from every individual (Nj,q) and repeatability values, using repeated migrations
(Niep) over 2 or 3 yr

Sex Nina Value + SD Nina/Nrep R Lower CI Upper CI  p-value
Departure date Female 20 13 March + 10 d 11/23 0.477 0.009 0.821 0.002
from breeding site Male 8 26 March + 13 d 4/10 0.490 0.035 0.747 <0.001
Arrival date at Female 20 31 October + 8 d 12/25 0.871 0.729 0.995 <0.001
breeding site Male 8 30 October = 15 d 4/10 0.972 0.939 0.991 <0.001
Duration of the non- Female 20 232 +12d 12/25 0.814 0.590 0.937 <0.001
breeding period Male 8 218+24d 4/10 0.859 0.542 0.974 <0.001
Daily foraging Female 16 6.72 £ 0.75 7/16 0.623 0.080 0.895 0.066
time in h d™! (%) (28.00 + 3.14)
Male 7 7.71 +0.80
(32.16 + 3.34)
Daily flight bouts (n)  Female 16 3.86 = 0.65 7/16 0.207 0.000 0.750 1.000
Male 7 4.16 + 1.02
Flight bout duration Female 16 63.53 £ 19.04 7/16 0.656 0.178 0.916 <0.001
(min) Male 7 45. 97 + 8.45
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day of the year and significantly repeatable within in-
dividuals (Table 1). NPP and breeding performance
had no effect on the foraging activity, or the number
and duration of flight bouts.

DISCUSSION

During the non-breeding season, the tracked
brown skuas from King George Island (Maritime
Antarctic) were widely distributed over the Patagon-
ian Shelf and shelf-break and the Argentine Basin,
particularly in the area of the Brazil-Falklands Con-
fluence. The northern end of this range is substan-
tially further north than the distribution indicated for
this species in Furness (1987), but more consistent
with subsequent at-sea observations (Olmos 2002).
The use by some individuals of the Southern Brazil
Shelf contrasts the tracking data from brown skuas at
South Georgia, which mostly spent the non-breeding
season further south in the Argentine Basin (Phillips
et al. 2007, Carneiro et al. 2016). Hence, the distribu-
tions of the 2 brown skua populations overlap only
at the Brazil-Falklands Confluence —and indeed,
there seems to be greater overlap of the birds from
South Georgia with those of the closely-related Falk-
land skua in the area of the southern Patagonian
shelf-break (Phillips et al. 2007). However, given the
few Falkland skuas (n = 4) that have been tracked
and the different study periods (2002), this conclu-
sion should be viewed with some caution.

Within the entire (population-level) non-breeding
range, individuals were continuously distributed
across space, suggesting a large contiguous area of
suitable habitat (Fig. la). However, particular indi-
viduals only used distinct portions of the overall
range and in a rather consistent manner within and
across years (Figs. 2 & 3). Individual consistency in
migration strategies was also recorded for 17 south
polar skuas Catharacta maccormicki and 3 great
skuas C. skua tracked in 2 and 3 consecutive non-
breeding seasons (Kopp et al. 2011, Magnusdéttir et
al. 2012, Weimerskirch et. al. 2015), and suggests
that individual consistency in migration strategies is
widespread in skuas.

The 4 migration strategies identified within this
brown skua population matched the seasonal shift in
productivity in the wintering area. The majority of
the individuals (‘NorthPata' strategy) utilised the
year-round, highly productive Brazil-Falklands
Confluence (Garcia et al. 2004). Moreover, a small
group of 3 individuals (‘RioPlata’ strategy) regularly
switched between the highly productive region influ-

enced by the outflow of Rio de la Plata (Acha et al.
2008) and the more open waters towards the Pata-
gonian shelf-break. Individuals from the southern
and northern end of the range (‘SouthPata’ and
‘SouthBrazil' strategies) used the highly productive
but seasonal frontal systems of the southern Patagon-
ian Shelf (Acha et al. 2004, Rivas et al. 2006), and the
South Brazil Shelf (Acha et al. 2004), respectively.
During this period, the tracked individuals spent only
a small proportion of the day flying, a pattern found
in brown, great and south polar skuas (Phillips et al.
2007, Magnusdottir et al. 2014, Weimerskirch et al.
2015, Carneiro et al. 2016). A clear diurnal pattern
was apparent, with multiple landings during the day,
interspersed by 3 to 4 short flight bouts of approxi-
mately 1 h. On average, females made longer flight
bouts than males and spend less time foraging
(Table 1). The sex-specific differences might be ex-
plained by the reversed sexual size dimorphism in
brown skuas (Phillips et al. 2002). Males are likely to
have lower wing loading, greater manoeuvrability
and a lower cost of take-off, which can lead to sex-
specific differences in habitat use and behaviour
(Phillips et al. 2004). The level of foraging activity
and number of flight bouts was not repeatable at the
individual level, suggesting that brown skuas adjust
their feeding behaviour depending on local food
availability. However, there was a degree of individ-
ual consistency in the duration of flight bouts, which
might also relate to differences between wintering
regions in the distance between prey patches, or be
associated with the animals’ personality, since roam-
ing behaviour and exploration is often considered
as a repeatable individual trait (e.g. Dingemanse et
al. 2002, Réale et al. 2007, Patrick & Weimerskirch
2014). The lack of correlation between activity pat-
terns and absolute NPP is most likely attributed to
the coarse spatial scale, and the time lag for changes
in productivity to propagate through trophic levels to
affect prey abundance for higher predators such as
skuas (Frederiksen et al. 2006). However, we still
consider NPP values, in combination with frontal sys-
tems, to be a valuable indirect measure of large-scale
food predictability and availability that can be linked
to population-level distributions (see also Zainuddin
et al. 2006, Pinaud & Weimerskirch 2007, Humphries
et al. 2010, Thompson et al. 2012).

Following breeding, the tracked skuas travelled to
one of several alternative wintering areas within the
overall range according to their particular migration
strategy. In contrast, in the late non-breeding season,
most tracked birds moved towards the same area
around the central Patagonian shelf-break, where
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they remained for several weeks before returning to
the breeding ground (Fig. 2). This area is particularly
known for its strong seasonality (Signorini et al. 2006),
and the increased foraging activity of the brown skuas
suggests they exploit the local spring peak in primary
production (Figs. 1 & 4b). The diversity of migration
strategies means that birds experience different envi-
ronmental conditions during the winter, which could
presumably affect body condition, laying date, breed-
ing probability and success (e.g. Bogdanova et al.
2011, Fayet et al. 2016) and the degree of exposure to
pollutants (e.g. Leat et al. 2013). The high spatial and
temporal migratory connectivity (here defined as the
spatial extent of one population at any given time; see
Bauer et al. 2016 and Lisovski et. al 2016) shown by
the tracked birds, particularly the aggregation of most
individuals in the same area at the end of the winter,
makes the population susceptible to oceanographic or
other changes within the region.

It should be noted that 3 of the tracked skuas did
not join the others on the central Patagonian shelf-
break but moved further offshore before returning to
King George Island. Based on a discriminant analysis
(including bill depth at the gonys, along with tarsus,
culmen, wing and head length), these 3 individuals
were significantly smaller than the others (authors'
unpubl. data). This suggests that they might have
been hybrids between brown skuas and the smaller
south polar skua, as hybridisation between these
closely-related species occurs frequently (Ritz et al.
2006). This might explain their distinctive migration
pattern, as south polar skuas are trans-equatorial
migrants (Kopp et al. 2011, Weimerskirch et al. 2015),
and hybridisation is known to alter migration behav-
iour in other species (e.g. Helbig 1991).

Timing of migration, like distribution, differed
between sexes and was consistent within individuals
(Table 1). Repeatability in the arrival date at the
breeding grounds was notably high, particularly
given the extensive variation among individuals
(within a 48 d range). This could reflect the varying
costs and benefits of the timing of migration between
individuals (Meller 1994), or among birds of different
age-classes or experience levels (Jaeger et al. 2014).
For example, competitive individuals can evict weak
competitors from territories even if they arrive latter,
and might consequently benefit from a shorter over-
all attendance period at the breeding grounds
(Forstmeier 2002). There was some variation be-
tween years, indicating a degree of flexibility in
response to local environmental conditions, as has
been demonstrated across a large range of taxa (e.g.
Marra et al. 1998, Gill et al. 2001, Norris et al. 2004).

As arrival date is subject to much stronger selection
pressures (Both & Visser 2001, Brown et al. 2005), we
expected that individual repeatability in departure
dates from King George Island would be lower. Pre-
vious studies of brown skuas, as well as other seabird
species, have shown that non-breeders or failed
breeders depart earlier because they are not con-
strained by reproductive duties (Phillips et al. 2005,
2007, Bogdanova et al. 2011, Fifield et al. 2014).
However in our data there was no such relationship,
although the sample size was high (18 successful and
29 unsuccessful individuals). The later departure of
male brown skuas in comparison with females can
be explained with their higher degree of nest-site
fidelity (Parmelee & Pietz 1987) and the benefits of a
longer defence period that might increase their
chance of retaining the same territory in consecutive
breeding seasons.

Eight tracked individuals, most of which returned
relatively early to the breeding grounds, went on a
pre-laying exodus of ca. 1000 to 1500 km back to
their non-breeding ranges. The majority of brown
skuas tracked from South Georgia, particularly
females, also went on a pre-laying exodus (Phillips et
al. 2007, Carneiro et al. 2016). There are obvious
benefits of early arrival; brown skuas are highly ter-
ritorial and their reproductive success depends on
the quality of the acquired territory (Hahn & Bauer
2008). However, there might also be costs, such as
the increased risk of encountering adverse weather
during the early season (Meller 1994). It appears that
a pre-laying exodus is discretionary, presumably
depending on conditions at the breeding colony, as
only 1 of the 5 individuals tracked in multiple years
performed such a trip twice.

In conclusion, we recorded highly consistent indi-
vidual migration strategies in brown skuas from
King George Island; this reflected considerable vari-
ation in timing of migration, non-breeding distribu-
tions and activity patterns. The tracked birds dif-
fered extensively in their arrival dates at the
breeding ground, a migratory trait that is supposed
to be under strong selection (e.g. Kokko 1999),
whereas the arrival dates within individuals were
highly repeatable. Based on the high levels of pri-
mary production, the tracked brown skuas mainly
exploit one of a number of alternative wintering
areas within the overall non-breeding range. How-
ever, almost all individuals moved to take advantage
of a seasonal peak in marine productivity in a par-
ticular area for several weeks before the final return
to the colony; these birds are presumably returning
to this area of high resource abundance that they
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experienced during an initial early-life exploration—
refinement phase (Guilford et al. 2011). The 3 indi-
viduals that showed a different late-winter distribu-
tion may not have visited this otherwise common
area in previous years, or may be hybrids exhibiting
an alternative migration strategy that reflects
genetic differences. We were unable to disentangle
the relative contribution of genetic control versus
past experience in determining individual migration
strategies. To this end, we would need to track
movements of juvenile brown skuas during their
first years at sea, and ideally, also track their par-
ents. Such data would also be extremely valuable
for determining the flexibility in migration strategies
within and across generations, and provide an indi-
cation of how quickly seabirds can adapt to rapid
changes in the environment.
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ABSTRACT: Individual specialisations have been suggested to improve foraging efficiency by
optimising individual capacity (physiological and behavioural) and reducing intra-specific compe-
tition in exploiting prey resources. In this study, we investigated the inter- and intra-individual
variation in behaviour in an opportunistic forager, the gentoo penguin Pygoscelis papua, at Ker-
guelen Island, southern Indian Ocean. We used complementary bio-logging and stable isotope
analyses, coupled with morphometric measurements, to: (1) determine the inter-individual varia-
tion in morphology and foraging behaviour; (2) quantify intra-individual variation in foraging
behaviour; (3) investigate the links between consistency in foraging, distances travelled and body
condition; and (4) determine if dietary specialisations exist and are maintained outside the breed-
ing season. We show that this species exhibits a large inter-individual variation in foraging behav-
iour, with some individuals conducting very short trips close to the colony while others travelled
considerably farther. Heavier individuals tended to forage in more distant locations, dive deeper
and perform more benthic dives. Individual specialisation in behaviour was low to moderate at the
population level, yet some individuals were very consistent. The rate of travel was not influenced
by consistency, and there was a lack of correlation between body condition and foraging consis-
tency. High inter-individual variation in feeding ecology and dietary specialisations outside of a
single breeding season were observed, consistent with gentoo penguins being Type ‘B' generalists
(i.e. generalist populations composed of individuals each consuming a different range of foods).

KEY WORDS: Behavioural consistency - Diving behaviour - Feeding ecology - Foraging behaviour -
Individual specialisations - Pygoscelis papua - Stable isotopes

INTRODUCTION

According to the optimal foraging theory, individu-
als implement feeding strategies aimed at maximizing
energetic gains while minimizing costs (Stephens &
Krebs 1986). Individual specialisations have been
suggested to improve feeding efficiency by reducing
intra-specific competition or allowing individuals to
catch prey they can handle and digest most efficiently
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(Bolnick et al. 2003, Estes et al. 2003). Food consump-
tion rates and body condition differ among diet spe-
cialists, and these differences may reflect differences
in an individual's intrinsic quality (dit Durell et al.
2001, Bolnick et al. 2003, Anderson et al. 2009, Svan-
back & Persson 2009, Cucherousset et al. 2011). Spe-
cialisations in foraging, involving the repetition of
specific behaviours to acquire food or dietary choices
over time, have until recently been poorly investigated
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(Bolnick et al. 2003, Estes et al. 2003, Cook et al.
2006). Individual specialists have been defined as 'in-
dividuals whose niche is substantially narrower than
their population's niche for reasons not attributable
to their sex, age or discrete morphological group'
(Bolnick et al. 2003, p. 3). Even populations usually
thought to be generalists can actually be composed of
individual specialists, referred to as Type ‘B’ general-
ists (individuals each specialising on a different but
narrow range of food types) as opposed to Type ‘A’
generalists (individuals all taking a wide range of food
types) (Araujo et al. 2011, Loxdale et al. 2011, Layman
& Allgeier 2012, Fodrie et al. 2015).

Information on individual specialisations is crucial,
as they may have significant ecological consequences
at the individual and population levels, and may
impact ecological processes and foraging dynamics
(Bolnick et al. 2003, Matich et al. 2011, Ceia & Ramos
2015). Thus, it is of importance to identify the mech-
anisms generating inter-individual variation and
study the wider implications of variation in foraging
behaviour to understand trophic relationships be.
tween the animals and their environment (Bolnick et
al. 2003, Baylis et al. 2015, Ceia & Ramos 2015, Ker-
naléguen et al. 2015). The study of individual special-
isations requires longitudinal sampling, in which the
same individuals are sampled over time (Bolnick et
al. 2003, Aratjo et al. 2011). Ideally, the use of com-
plementary techniques that represent different time-
scales and resolutions should be implemented to
accurately describe individual specialisations and
their persistence (Kernaléguen et al. 2016). Seabirds
are suitable models to study individual specialisa-
tions, as most species nest in large colonies that allow
for easy access to individuals that use the same envi-
ronment, are strongly constrained during breeding
as central place foragers and may compete for the
same resources (Ratcliffe et al. 2013).

Gentoo penguins Pygoscelis papua are among the
most widespread penguin species, distributed from
the northern subantarctic islands (Crozet; 46°S) to
the Antarctic Peninsula (62 to 69°S; Williams 1995).
These birds are considered inshore opportunistic for-
agers, consuming both benthic and pelagic species,
and exhibiting high plasticity in their diet, marine
habitat use and dive behaviour (Bost & Jouventin
1990, Woehler 1995, Lescroél & Bost 2005, Miller et
al. 2009). They consume patchy prey encompassing a
large size range, from small crustaceans to large fish
species (Hindell 1989, Robinson & Hindell 1996).
Accordingly, their diets vary substantially among
breeding locations, within colonies and also within
individuals of the same colony (Croxall et al. 1988,

Bost & Jouventin 1990, Robinson & Hindell 1996,
Lescroél et al. 2004, Polito et al. 2015).

As gentoo penguins are long-lived and sedentary
(Williams & Rodwell 1992), individuals are expected
to learn to apply efficient foraging tactics throughout
their lifetime and, thus, increase their individual effi-
ciency when foraging under situations of competition
or food limitation (Estes et al. 2003). Indeed, recent
studies suggest that individuals exhibit some degree
of prey selection and specialisation, as judged by
stomach content analysis and stable isotope values
(Polito et al. 2015). However, there is little informa-
tion on individual consistency in foraging behaviour
and on whether such specialisations are linked to
diet in this species.

In the present study, we investigated inter- and
intra-individual variation in the foraging ecology of
gentoo penguins. We used complementary bio-logging
and stable isotope analysis, coupled with morphomet-
ric measurements to: (1) describe their inter-individual
variation in morphology, spatial use and dive be-
haviour; (2) quantify their intra-individual variation in
foraging behaviour; (3) investigate the links between
consistency in foraging behaviour, distances travelled
and body condition; and (4) describe their inter-
individual variation in feeding ecology, and determine
if dietary specialisations exist and are maintained out-
side of the breeding season. We predicted that: (1)
individuals would differ greatly in foraging metrics, as
gentoo penguin diet and behaviour are known to vary
among colonies and between individuals of the same
colonies, and that such variation would be attributed to
differences in body mass, which influences dive depth
(Lescroél et al. 2004, Lescroél & Bost 2005, Cook et al.
2013, Polito et al. 2015, Camprasse et al. 2017); (2) di-
etary and behavioural consistency would be detected,
as populations usually considered generalists are in-
creasingly shown to be composed of individual spe-
cialists (Woo et al. 2008, Aratjo et al. 2011, Loxdale et
al. 2011, Layman & Allgeier 2012, Fodrie et al. 2015);
and (3) individuals displaying higher consistency in
foraging behaviour would travel shorter distances and
have higher body condition, as such consistency is
thought to allow individuals to forage more efficiently
(Bolnick et al. 2003, Estes et al. 2003).

MATERIALS AND METHODS
Study site and instrumentation

The study was performed at Kerguelen Island in
the southern Indian Ocean, one of the major breed-
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Fig. 1. One track per gentoo penguin
Pygoscelis papua instrumented at
Pointe Suzanne (left panel) and
Estacade (right panel), Kerguelen
Islands, Indian Ocean, during the
creche period in December 2014 to
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Kerguelen Polar front

Islands

-
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%%' — Male
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ﬁ Unknown
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ing grounds for gentoo penguins (hereafter referred
to as gentoos) with 40000 pairs (Lescroél et al. 2004,
Lynch 2013). Gentoos breed along most of the Ker-
guelen coastline in many small to medium-sized
colonies ranging from 15 to >400 pairs). As the diet
and foraging behaviour of this species are known
to vary substantially among colonies and within
breeding locations, especially on Kerguelen Island
(Lescroél et al. 2004, Lescroél & Bost 2005), 2 colonies
were selected to ensure that the patterns observed
were not solely dependent upon colony location.
Accordingly, field work was conducted at the Pointe
Suzanne and Estacade colonies (ca. 20 km apart,
49°26'S, 70°26'E and 49°15'S, 70°33'E, respec-
tively, with ca. 50 and 25 chicks, respectively; Fig. 1).
Both colonies face the open ocean. The Pointe
Suzanne colony, however, faces a wider range of
foraging habitats due to its proximity to a more shel-
tered bay (Baie Norvégienne). The Estacade colony
is localized westward of the Polar Front, a productive
frontal zone, on the eastward side of the Kerguelen
shelf. Gentoos were in the late chick-rearing (i.e.
creche) stage at both study sites. Logistical con-
straints prevented sampling other colonies, as well as
greater sample sizes, and so our results on site effects
must be interpreted with caution.

We deployed data loggers on breeding gentoos
during the late chick-rearing period (creche stage:
chicks >4-5 wk old), in the 2014/15 breeding season
(Table 1). To determine the at-sea movements and
diving behaviour of the penguins, we used Fastloc

GPS loggers (F2G 134A; FastLoc®; Sirtrack; 69 x 28 x
21 mm, 39 g in air), alone or in combination with
time-depth recorders (TDR, LAT1800S, Lotek Wire-
less; 36 x 11 x 7.2 mm, 4.8 g in air). GPS loggers were
programmed to sample position every 5 min. The
TDR units were set to record depth and temperature
at 1 s intervals. All attached devices, alone or in com-
bination, weighed <1 % body mass.

At Pointe Suzanne, sampling occurred between 24
November and 9 December 2014. In total, 24 birds
were instrumented for 4 to 16 d according to the
possibilities of recapture. We used either 2 kinds of
instruments (GPS+TDR: n = 18), or only 1 instrument
(GPS: n = 4, TDR: n = 2). At Estacade, 9 birds were
instrumented between 20 December 2014 and 4 Jan-
uary 2015 with GPS+TDR for 4 to 15 d.

All instrumented birds were confirmed breeders,
with only birds that were observed feeding chicks be-
ing sampled. Individuals were weighed in a cloth bag
using a suspension scale (+25 g, Pesola) before data
loggers were attached to the dorsal feathers using wa-
terproof tape (Tesa 4651) and cyanoacrylate glue
(Loctite 401 Instant Adhesive). Individuals were then
released and resumed normal behaviours. With the
exception of 3 individuals from Estacade that were re-
captured on the beach a few kilometres north or south
of the colony, all birds were recaptured at the colony
after several foraging trips. The data loggers were re-
moved and individuals were weighed again. Meas-
urements of bill length and depth were taken with
Vernier callipers (+0.05 mm) and flipper length with a
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Table 1. Summary of bio-logging deployments for gentoo penguins Pygoscelis
papua instrumented and retrieved at Pointe Suzanne and Estacade (Ker-
guelen Islands, Indian Ocean) during the creche period in December 2014 to

while their §!°N values increase with
trophic level (Cherel et al. 2010). Iso-

January 2015; F: female, M: male, —: missing data

topic values were measured on whole
blood and feathers. The rationale is

Bird Sex Body Initial Bill  Bill Flipper Tracking Total | L@t the2complementary tissues inte-
condition mass depth length Ilength time no. of grate different periods of lnformétlop,
index (kg) (mm) (mm) (mm) (d) trips due to the fact that the keratin in
feathers is inert after synthesis (de-
Pointe Suzanne tails in Cherel et al. 2008). Blood is a
4 F 04 5.0 13.4 81.0 225.0 8.3 15 taboli tive ti that int ¢
7 = _04 58 16 95.0 2440 6.9 4 metabolic active tissue that integrates
9 F -0.4 36 133 760 2150 10.9 11 a period of weeks before sampling,
10 F -0.4 4.4 15.6 81.0 220.0 7.0 9 whereas feathers reflect the diet at
3 F -0.4 44 158  80.0  221.0 10 3 the time they were grown, as feathers
15 F 03 5:2 151 88.0 2320 4.0 3 are metabolically inert after they are
20 F 0.2 50 149 750  230.0 45 3 Y Y
22 F 0.0 45 155 810 2100 133 6 grown (Cherel et al. 2000). In the
24 F 0.4 5.1 14.3 84.0  220.0 4.4 3 present study, blood isotopic values
1 M -1.7 43 167 950  234.0 6.5 9 integrated a few weeks before
g x 0_4 gg 1;? 91_0 ;228 33 122 sampling, thus corresponding to the
5 M _ 6.1 16.5 _ 2350 6.1 3 breeding period (Bearhop et al. 2006).
6 M 0.4 5.9 18.4 79.0 231.0 - - In contrast, gentoos moult once a year,
11 M -0.1 5.8 16.5 89.0  238.0 8.7 3 at the end of the breeding period,
12 M 0.3 2.7 17.6 850  225.0 8.0 2 after a period of 10 d at sea dedicated
14 M -0.2 5.3 16.5 90.0 228.0 4.4 4 t lenish t of bod
17 M -01 53 16.8 850  230.0 5.4 3 o replenishment ob body IEServes
19 M 0.2 5.7 18.2 89.0 232.0 _ _ (Croxall & Davis 1999, Polito et al.
23 M -0.3 5.8 17.3 95.0  232.0 - - 2011). They then fast ashore for about
Estacade 3 wk, using their body reserves to
26 - - 4.5 - - - 6.1 2 cover the energetic and nutrient
28 - - 6.4 - - - 15.4 3 . .
27 - ~ 5 17.1 820 920.0 40 3 needs for n.loultlng and fasting (Cr‘ox
25 M _ 6.6 _ 91.0 234.0 5.9 9 all & Davis 1999). Hence, the iso-
30 M 1.4 7.8 19.5 92.0 235.0 6.2 6 topic values of feathers document the
33 M 1.1 6.3 164 850 2240 - - foraging ecology of penguins during

metal ruler (+1 mm). In addition, a blood sample
(0.5-1.5 ml) was obtained by venipuncture of a tarsal
vein for stable isotope analysis and molecular sex de-
termination. Feathers (n = 3-6) were plucked from the
thorax region for stable isotope analysis. Handling
times ranged from 15 to 20 min, during which the
bird's head was covered with a hood to reduce stress.
Of the 33 birds instrumented at the 2 study sites, 28
birds were recaptured, of which 4 did not go to sea to
forage and 2 individuals had TDRs that malfunctioned.
Overall, 22 individuals provided data which were
analysed (Pointe Suzanne: n = 17, Estacade: n =5). All
22 individuals conducted more than 1 trip, with 19
providing both TDR and GPS data.

Isotopic analyses

The 3'3C values of seabirds reflect their foraging
habitats (Cherel & Hobson 2007, Jaeger et al. 2010),

the pre-moult period of hyperphagia
at sea during which they build up
energy reserves (Cherel et al. 2008), here almost 1 yr
before sampling the instrumented gentoos.

In the laboratory, blood samples were freeze-dried
and powdered. Lipid extraction was unnecessary, as
the C:N mass ratio was <3.5 for all blood samples
(Cherel et al. 2005b); C:N mass ratios + SD were
3.29 = 0.06 (whole blood, n = 25) and 3.17 + 0.05
(feathers, n = 27). A pool of 3 feathers bird™' was
cleaned of surface lipids and contaminants using a
2:1 chloroform:methanol bath, air-dried and cut into
small pieces. For each feather, the rachis and the top
5 mm of the feather synthesised at sea were dis-
carded before analysis so that the remaining feather
sections were homogeneous and corresponded to the
fasting period (Cherel et al. 2005a).

Nitrogen and carbon isotopic ratios were measured
on aliquots of 0.2 to 0.4 mg with a continuous-flow
isotope-ratio mass spectrometer (Thermo Scientific
Delta V Advantage) coupled to an elemental ana-
lyser (Thermo Scientific Flash EA 1112). Results are
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presented in the usual 8 notation relative to Vienna
PeeDee Belemnite (VPDB) for carbon and atmo-
spheric N, (AIR) for nitrogen. Replicate measure-
ments of internal laboratory standards (acetanilide
and peptone) indicated measurement errors <0.15 %o
for both 8'C and 8'°N. Blood and/or feather sam-
pling was not possible on all individuals instru-
mented, resulting in the collection of either no sam-
ples, only feathers, only blood, or both samples for
each individual. Stable isotope values were obtained
from 25 individuals for blood (11 females, 14 males),
and 27 individuals for feathers (11 females, 13 males,
3 unknown). Both tissues were sampled in 24 individ-
uals (11 females, 13 males). Of these 24 individuals,
16 also had both GPS and TDR data, 1 had TDR data
only, 3 had GPS data only, and 4 did not have any
bio-logging data.

Data processing

All data analyses were conducted in the R Statisti-
cal Environment in version 3.3 (R Core Team 2015).
The GPS records for each bird were visually in-
spected to identify individual foraging trips. As some
birds hauled out in some locations distant from the
colony for a few hours to several days, foraging trips
were defined as the time between when an indi-
vidual left a land-based position until it came back
ashore. The diveMove package (Luque 2007) was
used to apply a speed filter to the GPS data to remove
erroneous locations (with a speed threshold of 1.5 m
s~! based on the 95 percentile of swim speeds for all
individuals). The GPS records were interpolated to
1 s intervals in the adehabitatLT package (Calenge
2015) to provide spatial information for the dive
records. Furthermore, the packages trip (Sumner
2009) and sp (Pebesma & Bivand 2005) were used to
obtain summaries of at-sea movements and investi-
gate the consistency in habitat use. Individual tracks
were overlaid with a grid comprised of 2 x 2 km cells,
where the number of grid cells used were calculated
for each trip. Means and coefficients of variation for
each individual were calculated for trip duration,
maximum range, and horizontal distance travelled
per trip and per hour. Bearing for each trip was calcu-
lated as the angle between the colony and the most
distal point of the tracks, and standard deviation in
bearing was calculated for each individual using the
circular package (Agostinelli & Lund 2011).

The diveMove package was used to obtain sum-
maries of diving metrics from TDR records (only
dives deeper than 2 m were considered to be forag-

ing dives, following Lescroél & Bost 2005). The Iubri-
date package (Grolemund & Wickham 2011) was
used to identify night and day dives based on sunset
and sunrise times at the relevant sites. Benthic and
pelagic dives were determined based on the propor-
tion of dive time that was spent in the bottom phase
for each dive (phase detected by the 'diveStats’ func-
tion after descent and before ascent), and the depth
achieved on consecutive dives. If the dive depth
stayed within 5 % of the maximum depth for this dive
for more than 15 s, and if the dive was within 5% of
the maximum depth achieved during the last 15 min
of diving, the dive was labelled as ‘flat-benthic’. If the
dive was within 5% of the maximum depth achieved
for ‘flat-benthic’ dives during the last 15 min of div-
ing, but the other criterion was not met, the dive was
labelled as 'V-benthic'. If the dive met neither of
these criteria, the dive was labelled as 'pelagic'. The
proportion of pelagic dives was then determined.
Means and standard deviations per trip were calcu-
lated for bottom time and mean bottom depth of each
dive, the total vertical distance travelled per trip and
per hour, and the proportion of pelagic and night div-
ing. Horizontal and vertical distances travelled were
summed to provide an index of foraging energy ex-
penditure per trip and per hour (Wilson et al. 1986).

An index of consistency in habitat use was calcu-
lated for each animal. For each trip, the number of
grid cells used by the individuals was identified. The
number of shared grid cells between each pair of
trips (e.g. trip 1 and trip 2, trip 2 and trip 3, trip 1 and
trip 3 etc.) was determined and the average of these
calculated. This number was then divided by the
average number of grid cells used per trip. Different
grid cell sizes were tested to calculate the index of
consistency in habitat use (from 1 x 1 km to 10 x 10 km)
to check the influence of grid cell size on our estimate
of spatial consistency. Indices obtained, regardless of
cell grid sizes, were highly correlated, and data from
the 2 x 2 km grid cell size are presented.

Statistical analyses

Body mass and morphometric measurements were
correlated (linear regressions: beak depth: F 5 =
14.62, R?=0.42, p =0.001; flipper length: F, 15= 14.15,
R?=0.65, p = 0.001) and therefore, only relationships
with body mass were further investigated in models.
A principal component analysis was run on flipper and
bill length and bill depth with the FactoMineR pack-
age (Lé et al. 2008). Residuals from a linear regres-
sion of the first principal component against body
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mass were then used as an index of body condition
(Cuervo et al. 2009). The first principal component of
the morphometric measurements explained 72.2 % of
the total variation and was therefore used as an esti-
mate of structural size. There was no significant dif-
ference between the sexes in the slopes or elevations
of the linear regressions of body mass on this esti-
mate of structural size. Therefore, data were pooled
to estimate individual body condition.

The following spatial metrics were highly corre-
lated: trip duration and maximum range (linear mixed
effects models: F, 1;=61.17, R%*=10.78, p <0.001); and
maximum range and total distance travelled (linear
mixed effects models: F; 7 = 285.7, R2=0.94, p <
0.001). Consequently, only maximum range was used
in linear mixed effects models. Similarly, the follow-
ing diving metrics were highly correlated: bottom
depth and total vertical distance travelled (linear
mixed effects models: F; 7 = 41.41, R?2=0.69, p <
0.001); and dive time and bottom depth (linear mixed
effects models: F; 7 = 91.04, R? = 0.83, p < 0.001).
Thus, only bottom depth was included in further
analyses.

Following a preliminary analysis to remove out-
liers, we used linear regressions, and linear mixed
effects models in the package Ime4 (Bates et al. 2014)
where individuals had repeated samples, to investi-
gate relationships between morphometric measure-
ments, consistency in foraging strategies and stable
isotope values. For all models, backward-stepwise
model selection was used to select the most parsimo-
nious model (Ratcliffe et al. 2013). First, the most
appropriate random effects structure was identified
with the restricted maximum likelihood (REML), then
the best fixed effects structure was determined using
maximum likelihood (ML) after models were com-
pared with the ANOVA function, and the most
parsimonious models were found based on their
Akaike's Information Criteria. For models in which 1
observation per trip was used (i.e. for spatial use met-
rics), individuals were included in the random
effects. For models in which multiple observations
per trip were used (i.e. for diving behaviour metrics),
trip nested within individuals was included in the
random effects. The selected models were refitted
with REML to estimate the model parameters (Zuur
et al. 2009). The residuals of the models were in-
spected, and whenever there was evidence of het-
erogeneity in the residuals, a sex- and/or site-specific
variance structure was applied (Zuur et al. 2009).

More specifically, in order to describe the inter-
individual variation in morphology and foraging be-
haviour, we investigated the effects of sex and stage

on morphometric measurements, and the effects of
sex, site and body mass on foraging metrics (interac-
tions between fixed effects could not be investigated
due to small sample sizes). A k-means clustering
analysis was performed to determine whether indi-
viduals clustered according to their foraging behav-
iour. In order to quantify the intra-individual varia-
tion in diving behaviour and spatial use, we used the
R package ape (Paradis et al. 2004) to perform a vari-
ance component analysis. This method calculates the
variance, standard deviation and proportion of total
variance occurring at the levels of individual, and trip
within individual when multiple observations per trip
were obtained, as well as the residual variation (Rat-
cliffe et al. 2013, Harris et al. 2014). An estimate of
individual specialisation is given by the proportion of
variance explained by the individual variance com-
ponent (Bolnick et al. 2003, Dingemanse & Dochter-
mann 2013, Ratcliffe et al. 2013). When models
including sex, site or body mass were better than the
equivalent models without fixed effects (i.e. null
models), the variance component analysis was run on
both null and optimal models to quantify the reduc-
tion in variance explained by the individual, or the
trip effects after the inclusion of the fixed effects (Rat-
cliffe et al. 2013). In order to investigate the links
between consistency in foraging behaviour, vertical
and horizontal distances travelled, and body condi-
tion, linear regressions were used. In order to quan-
tify the inter-individual variation in trophic niche and
foraging behaviour, and determine if dietary special-
isations were maintained outside of a single breeding
season, relationships between carbon and nitrogen
values in blood and feathers, respectively, were
investigated. Results presented are means + SD,
unless stated otherwise.

RESULTS

Inter-individual variation in morphometry and
at-sea behaviour

Gentoo penguins varied considerably in their body
condition, mass and morphometric measurements
(Tables 1 & 2). Body condition indices were lower at
Pointe Suzanne (linear regression: F; ;3= 14.42, R*=
0.4, p = 0.001) compared to Estacade but similar
between sexes (linear regression: F; ;3= 0.37, R? =
-0.03, p = 0.5). Lastly, females had smaller bill
lengths than males (linear regression: F; 15 = 32.68,
R%=0.63, p < 0.001), as well as flipper lengths (linear
regression: F; ;3= 4.96, R2= 0.2, p = 0.04).
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Table 2. Summary of morphometric measurements for gentoo penguins
Pygoscelis papua instrumented and retrieved at Pointe Suzanne and Estacade
(Kerguelen Islands, Indian Ocean) during the creche period in December 2014

to January 2015; F: female, M: male

Mean + SD Minimum Maximum

Pointe Suzanne
Estacade

F

M

Pointe Suzanne
Estacade

F

M

Pointe Suzanne
Estacade

F

M

Pointe Suzanne
Estacade

F

M

Pointe Suzanne
Estacade

F

M

Body condition

index

Body mass (kg)

Bill depth (mm)

Bill length (mm)

Flipper length
(mm)

-0.1+0.5
1.3+0.2
-0.1+04
0.1+£0.8

52+0.8
7.1+1.0
48+0.6
59+09

16.1 +1.5
18.0 + 2.2
149+1.0
17.5+1.0

85.5+6.3
88.5+4.9
82.3£6.1
88.7 £ 4.7

2284 +9.2
229.0+ 7.8
224.1+£10.1
232259

-1.7

1.1
-0.4
-1.7

75.0
85.0
75.0
79.4

210.0
224.0
210.0
224.0

0.4
1.4
0.4
1.4

6.8
7.8
5.8
7.8

18.4
19.5
16.0
19.5

95.0
92.0
95.0
95.0

245.0
235.0
244.0
245.0

Overall, a total of 113 foraging
trips were obtained (16 from Esta-
cade, 97 from Pointe Suzanne)
with 2 to 15 trips recorded per
individual (mean = 5) lasting 4.0 to
15.4 d each (mean = 7.3; Table 1).
Individuals varied considerably
in their spatial use of the marine
environment (Table 3), even with-
in the same colony, with some in-
dividuals foraging close to the
shore, while others travelled to-
wards the continental shelf. Indi-
vidual maximum distances from
the colony averaged 21.6 + 18.7
(3.3-78.3) km, trip durations aver-
aged 26.6 + 22.8 (5.1-77.6) h, total
horizontal distances covered aver-
aged 65.0 £ 56.7 (9.9-217.4) km,
and horizontal distances per hour
averaged 2.7 = 0.5 (1.8-3.7) km.
Furthermore, individual birds ex-
ploited different areas around the
colony (Fig. 1). Six birds hauled
out in locations away from the
colony for periods of 10 to 57 h.
Birds did not go on 2 consecutive
long trips, but rather tended to
alternate long and short trips. A k-

means clustering analysis revealed 3
different foraging strategies: birds that
travelled farther, dived deeper and
were less pelagic (n = 5, means + SE:
49.3 + 19.3 km, 40.2 = 15.8 m, 70.9 =
11.4 %, respectively); birds that stayed
close to colony had the shallowest
dives and displayed the highest per-
centage of pelagic diving (n = 8,
means + SE: 8.1 +4.6 km, 13.6 + 7.1 m,
89.7 + 6.9%, respectively); and birds
with intermediate foraging metrics
(n =6, means + SE: 22.0 + 5.0 km, 30.7
+ 54 m, 73.7 = 10.2%, respectively).
Both sexes and sites were represented
in each cluster. Lastly, sex and site did
not influence spatial metrics (Table 4).

There was also considerable inter-
individual variation in the diving be-
haviour of the instrumented birds, irre-
spective of colony. Some individuals
performed very short and shallow dives
and travelled short vertical distances,

Table 3. Summary of spatial use metrics for gentoo penguins Pygoscelis papua
instrumented and retrieved at Pointe Suzanne and Estacade (Kerguelen Islands,
Indian Ocean) during the créche period in December 2014 to January 2015 (values
are means + SD); F: female, M: male

Bird Sex Mean Trip Maximum Total hori-  Horizontal
bearing duration range zontal dis- distance
°) (h) (km) tance (km) h7! (km)
Pointe Suzanne
4 F 98.8 £ 0.6 6.6 +5.1 33+17 99+5.38 1.8+0.8
7 F 1169+03 264+257 172+10.8 54.3+43.1 29+1.2
9 F 555+1.1 51+3.1 40+1.0 11.0+6.0 23+0.6
10 F 1299+0.2 79+4.5 57+2.1 17.5+ 8.6 24+05
13 F 11.5+1.5 66.0+61.7 39.4+187 133.8+98.7 25+0.8
15 F 127.5+02 11.5x75 13.9+34 35.0+16.7 3.3+0.6
20 F 127.0+0.1 8.2+83 10.0 + 8.9 249+ 253 3.0+0.1
22 F 90.4+04 338+354 174+154 724+70.2 22+04
24 F 1622+00 146=x74 99+1.5 29.3+8.6 23+0.8
1 M 106.0+04 48 +3.8 47 +28 10.9 + 6.2 26=+1.0
2 M 66.3 + 0.5 8.5+5.7 7.7+4.6 224 +15.1 29+0.6
3 M 56.3+0.8 77.6+43.7 783+628 2174+1873 25+1.0
5 M 1252+0.1 202x16.5 254+108 67.1+413 3.7+0.7
11 M 56.4+05 56.0+752 594+70.2 1644+211.0 32+04
12 M 107.0+0.1 70.0+38.6 323+3.8 140.5+60.9 21+03
14 M 91.2+0.1 188+10.7 21.9+10.2 53.2+28.2 29+03
17 M 1144+0.1 198=+171 176+122 49.5+38.8 25+04
Estacade
27 F 1279+02 11.1+128 9.5+6.3 23.3+16.8 3.1+14
25 M 79.7+0.2 448+5.3 287+24 894 +24 20+03
30 M 77.3+03 179+1.0 169 +2.1 489+ 3.4 2.7+0.2
26 - 1372+0.1 129=x77 154 +12.3 35.1+29.0 25+0.8
28 - 86.3+0.8 429+61.0 369+429 120.7+164.5 3.5+1.0
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Table 4. Model ANOVA testing the effect of gentoo penguin Pygoscelis papua sex and
site on maximum range, bottom depth and repeatability, including bird as a random
factor or trip nested within bird (likelihood ratio [LR] for linear mixed effects models
and F values for simple linear regressions). The last row reports on the linear mixed
effects model testing the effect of dive depth on the proportion of pelagic dives. Values

in bold are significant

between individuals (mean dis-
tance per ftrip: 96.6 81.0
[13.3-279.6] km; mean dis-
tance per hour of foraging:
3.5+0.6 [2.3-4.8] km).

+

Sex and site did not signifi-

Variable Type of model Parameters LR/Ftest df P cantly influence dive depth
(Table 4). Some individuals per-
Maximum Linear Random effect: bird 33.21 6 <0.0001 . .
. : formed almost entirely pelagic
range mixed effects Fixed effects A . )
Sex 3.21 8 0.07 dives while, for others, benthic
Site 0 8 0.98 dives represented up to 48 % of
. Body mass- 3.15 8 0.08 all dives (Table 5). Furthermore,
Bottom _ Linear Random effect: bird/trip 1236.29 9 <0.0001 individuals varied in their div-
depth mixed effects Fixed effects K R .
Sex 3.2 8 0.07 ing schedule, with some indi-
Site 0.46 8 0.5 viduals diving half of their time
Body mass 7.29 8 0.01 at night, and other individuals
Rgpgatablllty Linear model SQX 142 2,18 0.27 diving mostly during the day
indices Site 0.04 1,18 0.84 . . .
] ) . (Table 5, Fig. 2). Daylight dives
Proportion of Linear Fixed effects 84.83 4 <0.0001 303 + 37.5
pelagic dives mixed effects Dive depth were on average 50.5 £ 57.0 M
deep and 68.5 + 53.2 s long (n =

while others dived for much longer and deeper, and
travelled much greater vertical distances (Table 5). On
average, individuals spent 70.9 + 20.1 (29.5-106.8) s at
the bottom of dives, dived to bottom depths of 26.0 =
14.7 (5.1-61.6) m, and travelled total vertical distances
of 26.6 + 23.2 (2.1-74.5) km, and hourly vertical dis-
tances of 0.8 + 0.2 (0.4-1.1) km. Accordingly, the dis-
tance travelled (both horizontal and vertical) varied

24 336, 75% of dives recorded)
while night dives were on average 9.2 + 10.2 m deep
and 52.3 +39.9 slong (n = 8298, 25 % of dives recorded).
Several individuals dived at night during multiple-day
trips while other birds performed short trips (ca. 10 km
from the colony) and dived predominantly at night. The
frequency of night diving increased with the proportion
of pelagic diving, which averaged 76.8% during the
day and 92.9 % at night (Fig. 2).

means + SD); F: female, M: male, — unsexed

Bird Sex  Bottom Bottom Total vertical Hourly vertical Total (horizontal + vertical) Pelagic  Night diving
(%) time (s) depth (m) distance (km) distance (km) distance travelled diving (% of all dives)
Per trip (km) Per hour (km)
4 F 295+151 51+2.0 3421 0.5+0.2 13.3+7.5 2.3+0.8 93.8+3.8 43.8 +27.3
7 F 71.8+303 326+26.1 33.3+358 0.9+0.5 87.6 + 78.5 3.8+0.7 754 +20.3 22.5+19.2
9 F 339+14.7 52+1.8 34+35 0.6+0.3 144 +9.5 2.8+0.8 89.3+9.9 409 +34.3
10 F 51.6+205 11154 7.6+53 09+0.3 25.0+13.9 3.3+04 92.0+5.6 39.7 £ 33.8
13 F 864+10.7 40.1+8.9 72.3 £66.2 1.1+£0.1 206.1 + 164.8 3.6+0.7 779+ 7.2 156 +9.4
15 F 882+316 17.5+119 9.9+10.1 0.7+0.3 44.9 + 26.8 4.0+0.2 96.1 £5.1 24.4 +18.3
20 F 683+322 186+15.1 8.8 +11.7 0.8+0.5 33.7+36.9 3.8+0.5 87.6 £11.7 524 +429
22 F 79.5+283 266+139 31.0+30.3 0.8+0.4 103.5 £ 99.3 3.1+0.6 804 +14.7 145+538
1 M 548+ 17.0 9.7+5.5 21+19 04+03 13.0+8.1 3.1+1.2 957+ 5.3 36.5+25.9
2 M 89.6+13.8 157+8.2 72+73 0.8+0.2 29.6 +£22.3 3.6+0.7 88.2+9.5 54.8 £ 179
3 M 101.6 +3.2 61.6 £ 8.8 62.2+514 0.7+0.3 279.6 + 238.7 3.3+1.2 52.7+6.9 154 +5.7
5 M 69.5+53 26.2+£6.6 23.2+20.2 1.1+£0.3 90.4 £61.5 4.8+0.8 86.5£5.1 6.3+5.5
11 M 538+11.3 225+69 483+67.3 0.8+0.1 212.7 £ 278.3 41+04 80.6 £ 6.6 24.1+£52
12 M 106.8 +8.9 48.8 £3.6 74.5 +45.1 1.0+0.1 215.0 £ 106.0 3.1+0.2 66.8 +4.8 152 +4.8
14 M 576+12.0 253+8.7 177+ 14.0 0.8+0.3 70.9 £ 42.2 3.7+0.3 74.6 £3.9 12.9+6.9
25 M 727+53 36.9+9.5 37.1+£12.0 09+04 126.5+14 .4 29+0.7 68.1 £ 7.3 6.0 +2.7
30 M 88.0+11.6 36.5+10.0 18.6+6.9 1.0+£0.3 67.4 +£6.7 3.8+0.2 57.0+124 155+3.6
26 - 651+155 256+198 129+152 0.8+0.7 48.0 +44.2 3.3+1.5 74.7 £ 13.0 57+8.1
28 - 78.0x52.1 28.0+244 325+435 0.7+0.5 153.2 £ 208.0 4.2 +0.7 76.6 £26.8 17.0+16.1
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Fig. 2. (A) Frequency of night diving, (B) distribution of dive depths across time of day and (C) relationship between night and
pelagic diving in gentoo penguins Pygoscelis papua (panels A and B show individuals representative of the most benthic and
the most pelagic individuals) instrumented at Pointe Suzanne during the creche period in December 2014 to January 2015

Intra-individual variation and consistency in
foraging behaviour

The large differences in standard deviations be-
tween individuals indicate a substantial degree of
intra-individual variation both in spatial use and
dive metrics (Tables 3-5, respectively). At the popu-
lation level, the variance component analysis
showed low to moderate individual specialisations
both in dive behaviour and spatial use (Table 6).
The indices of consistency in habitat use were not
influenced by sex or site (Table 4, mean 0.37 + 0.20,
range: 0.05-0.73, Fig. 3). Some penguins were very
consistent in the proportion of pelagic or benthic
dives they performed (e.g. individual 14 stayed
within 10% of its own values) while others varied
greatly (e.g. individual 28 ranged from 47 to 98 %
of pelagic dives between trips; Fig. 4). The total
(horizontal + vertical) distance travelled per hour
was not correlated with repeatability indices (linear
regression: F; 17 = 0.97, R%?=-0.002, p = 0.34). Lastly,
body condition did not vary with consistency in
habitat use (linear regression: F; i, = 0.16, R? =
-0.07, p = 0.70).

N

A

—RI=0.05 (n =3 trips)
RI=0.31 (n =4 trips)
RI=0.73 (n = 9 trips)

0 15 30 km

Fig. 3. Representative examples for 3 individual gentoo pen-

guins Pygoscelis papua of spatial use and repeatability in-

dex (RI) for a highly repeatable individual (grey), a moder-

ately repeatable one (orange) and an individual with limited

repeatability (black) among instrumented birds at Pointe

Suzanne and Estacade during the creche period in December
2014 to January 2015
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Stable isotope values and link with
foraging metrics

Tissue isotope values varied widely
among individuals, with §°C and 8N
ranges of 4.0 and 5.8%. in blood and
4.2 and 4.4%. in feathers, respectively
(Table 7). Values for §'*C and §*°N co-var-
ied positively in both tissues (linear re-
gression: Fj 53=31.94, R?=-0.56, p < 0.001
and F; 5, = 38.72, R?= -0.62, p < 0.001 in
blood and feathers, respectively; Fig. 5).
There was no significant difference be-
tween the sexes in their §'°C values, but
males had higher §'°N values in blood and
feathers (linear mixed effects models: 3=
3.4, p = 0.002 and t,3= 0.9, p = 0.4, for

1 2 3 4 5 7 9 10 11 12 13 14 15 20 22 25 26 28 30

Individual number

Fig. 4. Boxplots for the proportion of pelagic diving performed in subsequent
trips by individual gentoo penguins Pygoscelis papua instrumented at Pointe
Suzanne and Estacade during the creche period in December 2014 to Janu-
ary 2015. Bold horizontal line: median of the distribution; box: interquartile
range, IQR (first quartile Q1 to third quartile Q3); whiskers: (Q1 + 1.5 x IQR)

to (Q3 + 1.5 x IQR); points: outliers

Table 6. Variance component analysis of dive depths, total

distances travelled and bearings to most distal point for

gentoo penguins Pygoscelis papua instrumented at Pointe

Suzanne and Estacade (Kerguelen Islands, Indian Ocean)

during the creche period in December 2014 to January

2015. 6% % is an estimate of individual specialisation (see
‘Materials and methods' for details)

Variance component o? T %

Maximum range

Individual 127.6 11.3 13.7
Residual 802.6 283 86.3
Bearings to most distal point

Individual 1572.7 39.7 529
Residual 1397.6 374 47.1
Mean bottom depth (null model)

Individual 2442 156 6.2
Trip 62.6 7.9 1.6
Residual 3612.8 60.1 92.2
Mean bottom depth (model with mass)

Individual 150.9 12.3 4.0
Trip 62.6 7.9 1.6
Residual 36124 60.1 944
Proportion of pelagic diving (null model)

Individual 166.4 129 67.5
Residual 80.1 9.0 32.5
Proportion of pelagic diving (model with mass)
Individual 33.5 5.8 51.3

Residual 31.9 5.6 48.7

nitrogen and carbon, respectively). Site
did not influence 3°N and 8*C values
(t,s=-0.6, p = 0.5, and t)3=-0.5, p = 0.6,
respectively). Isotopic values in blood and
feathers were positively and linearly cor-
related. Excluding an outlier (that was de-
picted by a preliminary statistical analysis)
increased the strength of the relationships

Table 7. Summary of stable isotope values for gentoo penguins
Pygoscelis papua sampled at Pointe Suzanne and Estacade
(Kerguelen Islands, Indian Ocean) in December 2014 to Jan-
uary 2015; F: female, M: male, — unsexed, NA: missing data

Bird Sex Blood Blood Feather Feather
6C13 8N15 8C13 8N15
4 F -18.76 11.49 -18.03 11.99
7 F -18.25 10.93 -18.7 12.68
9 F -17.83 12.55 -15.52 13.42
10 F -19.05 11.38 -18.37 12.57
13 F -20.11 8.44 -19.10 11.64
15 F -19.16 9.95 -19.06 12.33
20 F -20.18 9.57 -19.28 11.78
22 F -19.9 8.83 -15.03 14.03
24 F -16.98 10.86 -16.75 12.97
M -18.68 11.70 NA NA
2 M -16.86 13.55 -15.09 15.02
3 M -19.00 12.33 -16.90 14.66
5 M -19.44 12.50 -17.18 14.12
6 M -18.57 11.90 -17.97 12.66
11 M -19.05 11.76 -18.19 13.22
12 M -19.46 11.02 -18.17 13.05
14 M -18.49 11.26 -17.71 13.39
17 M -18.63 11.83 -18.28 13.24
19 M -18.11 12.67 -17.55 14.03
23 M -19.98 10.29 -19.17 12.62
18 - NA NA -18.72 11.09
27 F -20.30 8.43 -18.94 12.40
29 F -20.14 7.95 -18.59 11.86
25 M -19.30 11.62 -17.88 12.79
30 M -16.27 13.75 -15.69 15.47
33 M -19.44 10.74 -18.71 12.78
26 - NA NA -18.82 12.32
28 - NA NA -18.03 13.39
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Fig. 5. Relationship between stable isotope values in carbon and nitrogen in blood and in feathers of gentoo penguins Py-

goscelis papua sampled at Pointe Suzanne and Estacade during the créche period in December 2014 to January 2015 (light

blue squares = males from Pointe Suzanne, pink circles = females from Pointe Suzanne, dark blue squares = males from

Estacade, purple circles = females from Estacade, grey diamond = 1 unsexed bird from Pointe Suzanne, black diamonds = 2
unsexed birds from Estacade)

that explained 67 and 70 % of the inter-individual §'*C
and 8'°N variations, respectively (Fig. 6).

There was no relationship between maximum dis-
tances reached and blood §'°N or §'3C values (linear
mixed effects model: ;3= 0.1, p = 0.9, and t;g=-1.1,
p = 0.3). This was also the case for stable isotope val-
ues and bearings to the most distal point (linear mixed
effects model: tj3=-0.2, p=0.9, and t;,3=0.1, p=0.9,
respectively). Lastly, 8N or §!3C values were not
influenced by repeatability in spatial use (linear
mixed effects model: {;p=1.0, p=0.3, and t;,=1.0,p =
0.3, respectively) or body condition (linear mixed
effects model: t;;,=1.9, p=20.1, and ;= 1.8, p=0.1,
respectively).
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DISCUSSION

The salient findings of this study concerning an
opportunistic coastal forager, the gentoo penguin,
can be summarized as follows. (1) Individuals exhib-
ited very large inter- and intra-individual variation
in spatial use and diving behaviour. Heavy individu-
als tended to dive deeper, perform more benthic
dives and travel farther. (2) Despite the large intra-
individual variation in foraging, some consistency in
bearing, proportion of pelagic and night diving,
maximum ranges and dive depths was observed in
approximately a third of individuals. Foraging be-
haviour and behavioural consistency were not influ-
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Fig. 6. Correlations between stable isotope values in blood and feather for carbon and nitrogen in gentoo penguins Pygoscelis

papua (n = 24) sampled at Pointe Suzanne and Estacade during the creche period in December 2014 to January 2015 (light

blue squares = males from Pointe Suzanne, pink circles = females from Pointe Suzanne, dark blue squares = males from
Estacade, purple circles = females from Estacade)
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enced by sex and site. (3) There were large inter-
individual variations in stable isotope values, and
dietary specialisations were present and maintained
outside of the single breeding season sampled.

As inshore foragers, gentoos are known to strongly
differ in their foraging behaviour according to the
local environment (Lescroél & Bost 2005). Our first
prediction was that instrumented individuals would
differ greatly in foraging metrics among colonies and
among individuals of the same colony. In the present
study, site did not seem to influence foraging metrics.
However, within a single colony, birds exhibited a
large inter-individual variation in foraging behav-
iour, with some birds conducting very short trips
within 5 to 10 km of the colony while others travelled
to areas 120 to 140 km away. The more pelagic indi-
viduals performed up to half of their dives at night
during short trips, while more benthic foragers dived
predominantly during the day and reached greater
depths, regardless of colony. This is consistent with
other studies reporting that this species has high
behavioural flexibility over its wide range (Wilson et
al. 1991, Robinson & Hindell 1996, Miller et al. 2009,
Kokubun et al. 2010). Such flexible foraging habits
likely provide a buffer against changes in prey avail-
ability and distribution in a limited, coastal environ-
ment (Lescroél & Bost 2005, Miller et al. 2009), as
shown in other inshore foragers (Hoskins et al. 2008,
Saraux et al. 2011, Camprasse et al. 2017).

In the present study, some of the individuals per-
formed trips longer (up to 5.6 d) than previously
reported during the creche period in gentoos on Ker-
guelen Island (on average 1.3 d in Estacade, Lescroél
et al. 2009). It is possible that some of these birds
abandoned breeding during the study, as continued
provisioning status could not be determined upon
recapture for all birds. However, a third of birds
known to still be provisioning chicks at the end of the
study conducted such long trips. The large inter-
individual variation in foraging behaviour observed
in instrumented birds could be related to inter-indi-
vidual variation in morphology (Bost & Jouventin
1990, this study). Indeed, individuals with higher
body mass tended to travel farther, dive deeper and
perform more benthic dives, contributing to the ob-
served inter-individual differences in foraging. Dif-
ferences in dive patterns, associated with larger oxy-
gen stores in heavier birds, have been reported in
other diving birds (Mori 1998, Cook et al. 2013).

We predicted that behavioural consistency would
be detected in instrumented individuals, as numer-
ous populations considered generalists have actually
be shown to be comprised of individual specialists

(Woo et al. 2008, Aratjo et al. 2011, Loxdale et al.
2011, Layman & Allgeier 2012, Fodrie et al. 2015). In
the present study, at the population level, individual
specialisations in foraging metrics were low to mod-
erate, with bearings to most distal locations and the
proportion of pelagic diving exhibiting the highest
repeatability. This suggests that gentoos stay consis-
tent in some aspects of their foraging behaviour,
which may help to reduce intra-specific competition
and/or may allow individuals to catch prey they can
easily handle and digest (Bolnick et al. 2003, Estes et
al. 2003). This seems particularly relevant in inshore
foragers, as they are restricted in their foraging range
(Cook et al. 2006, Ratcliffe et al. 2013, Harris et al.
2014).

However, a significant degree of behavioural con-
sistency at the population level does not mean that all
individuals are consistent (Woo et al. 2008, Ceia et al.
2012). Indeed, we observed a large variation in the
degree of individual consistency in spatial use and
dive behaviour between instrumented individuals.
While some birds exhibited similar foraging strate-
gies over the course of multiple consecutive trips,
others did not. For example, some individuals dis-
played consistency in the proportion of pelagic div-
ing from one trip to the next while others were able to
switch from being mostly benthic on one trip to being
entirely pelagic. This highlights the need to sample
multiple trips to obtain a more accurate description of
a bird's foraging behaviour, particularly in inshore
foragers which may exhibit behavioural plasticity
(Saraux et al. 2011, Carpenter-Kling et al. 2017). The
large inter- and intra-individual variation in foraging
behaviour discussed here might contribute to gen-
toos having stable or expanding populations in parts
of their range (e.g. Antarctic Peninsula), where sym-
patrically breeding penguin species, more depend-
ent on specific resources such as Antarctic krill,
experience strong population declines (Miller et al.
2009, Polito et al. 2015).

Our third prediction was that individuals displaying
higher consistency in foraging behaviour would have
reduced horizontal and vertical distances travelled,
and higher body conditions as individual specialisa-
tions are thought to improve foraging efficiency (Wa-
tanuki 1992, Voslamber et al. 1995, Annett & Pierotti
1999, Golet et al. 2000, Votier et al. 2004). Contrary to
this prediction, no difference in distance travelled
(per hour) or body condition was found between con-
sistent and non-consistent individuals in the present
study. Thus, it seems that instrumented individuals
adopted different strategies based on intrinsic factors
(i.e. morphology, prey preferences, etc.), ultimately
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resulting in different repeatability indices. Indeed,
the heavier, more benthic individuals performed
more distant and longer trips, and such trips were less
repeatable within the timeframe of the study.

Generally, it is unclear whether specialists perform
better than generalists, as contradictory results have
been reported in the literature (Golet et al. 2000,
Votier et al. 2004, Ceia et al. 2012, Dehnhard et al.
2016). Our findings are in agreement with results on
a long-distance forager, the wandering albatross
Diomedea exulans, demonstrating that specialist and
generalist individuals had similar levels of body con-
dition (Ceia et al. 2012). No effect of specialisation on
reproductive outcomes has been detected in other
bird species (Votier et al. 2004, Katzner et al. 2005,
Dehnhard et al. 2016). Indeed, even though general-
ists may deliver somewhat less energy per day,
specialisation may not have an impact on measures
of evolutionary fitness (Woo et al. 2008). In contrast,
other studies on gulls, cormorants, guillemots and
skuas have shown specialists to have higher repro-
ductive success, food delivery rates, chick condition
or adult survival (Watanuki 1992, Voslamber et al.
1995, Annett & Pierotti 1999, Golet et al. 2000, Votier
et al. 2004). In gentoos, individual specialisations in
foraging behaviour may be linked with intrinsic fac-
tors, and may be more or less advantageous depend-
ing on prey availability, with generalists performing
better when food availability is low.

Lastly, in agreement with our second prediction,
long-term dietary consistency was detected in the
birds sampled. Stable isotope values in blood and
feathers in breeding gentoos were positively cor-
related, indicating that dietary specialisations are
maintained outside of the breeding season. This is
consistent with recent stomach contents and stable
isotope analysis studies on the diet of gentoos, indi-
cating that they may not be as opportunistic as previ-
ously thought (Clausen et al. 2005, Polito et al. 2015).
Within generalist populations, 2 types can be found:
type 'A’ generalists, when individuals all take a wide
range of food types; and type ‘B’ generalists, when
individuals each specialise on a different range of
food types (Bearhop et al. 2004). The results from our
study, documenting a large inter-individual variation
in diet, matching the high inter-individual variation
in foraging behaviour, and documenting the fact that
instrumented birds tend to display a similar feeding
ecology in the breeding and inter-breeding seasons,
seem to indicate that gentoos at the studied site are
type ‘B’ generalists.

The results of the present study should be inter-
preted with caution for two main reasons: the large

difference in sample sizes between colonies where
deployments were performed, and the potentially
poor environmental conditions the instrumented
birds experienced, seemingly leading to low prey
availability as judged by the low number of chicks
raised by gentoos and sympatrically breeding
shags (E. C. M. Camprasse pers. obs.). More data are
needed from Estacade to confirm the lack of a site
effect on the gentoos' foraging behaviour and feed-
ing ecology. Factors including a high incidence of
night diving and long trip durations could reflect
poor environmental conditions in the 2014/2015
breeding season, forcing penguins to forage in sub-
optimal conditions. This is consistent with poor
breeding success on Kerguelen Islands during de-
ployments compared with normal years, with brood-
ers losing chicks at the creche stage (E. C. M. Cam-
prasse pers. obs.). In the present study, shallow
nighttime dives were observed in the more pelagic
individuals, probably to allow them to take advan-
tage of pelagic prey distributed near the surface at
night during their diurnal vertical migration. Night/
twilight diving has been recorded in pygoscelid pen-
guins including gentoos (Croxall et al. 1988, Williams
& Rodwell 1992, Robinson & Hindell 1996) and other
penguin species (Schiavini & Rey 2004, Rey et al.
2012), but was thought to be uncommon in such
visual predators (Williams 1995, Bost et al. 2002).
Lastly, low prey availability, linked with the seem-
ingly poor environmental conditions experienced by
the birds instrumented in the present study, could
increase the degree of individual specialisation, as
individuals are forced to add different alternative
prey not consumed by conspecifics to their diet
(Svanback & Bolnick 2007, Tinker et al. 2008).

In summary, we showed that gentoo penguins on
Kerguelen Island exhibited large inter- and intra-
individual variations in foraging behaviour. These
may provide gentoos greater resilience to buffer
against changes in prey availability and fast chang-
ing environmental conditions, especially as their
foraging range is usually limited (Lescroél & Bost
2005, Polito et al. 2015). However, within this context,
gentoos still exhibit individual specialisation, helping
them reduce intra-specific competition and/or in-
creasing their foraging efficiency (dit Durell 2000,
Masello et al. 2013). Dietary specialisations outside of
a single breeding season were also highlighted, sug-
gesting that gentoo penguins are type ‘B’ generalists.
The next step to understand the consequences of in-
dividual specialisations would be to look at the link
between behavioural consistency and reproductive
output, which could not be done in this study due to
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logistical constraints. In order to fully understand the
effects of individual consistency of parents on their
offspring, researchers should also aim at obtaining
information on both partners of breeding pairs (Polito
et al. 2015). In the future, repetitive sampling of the
same individuals across stages of the same breeding
season and across years will help to characterize the
persistence of dietary specialisations at different
temporal scales in seabirds.
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ABSTRACT: Population expansions of successful species have gained importance as a major con-
servation and management concern. The success of these ‘winners' is widely attributed to their
high adaptability and behavioural plasticity, which allow them to efficiently use opportunities pro-
vided by human-modified habitats. However, most of these studies consider conspecifics as eco-
logical equivalents, without considering the individual components within populations. This is
critical for a better understanding of the main ecological mechanisms related to the success of win-
ning species. Here, we investigated the spatial ecology of the opportunistic yellow-legged gull
Larus michahellis, a clear example of a winning species in southern Europe, to examine its degree
of individual specialization in habitat use. To test for such individual strategies, we applied spe-
cialization metrics to spatial data obtained from 18 yellow-legged gulls that were GPS-tracked
simultaneously during the breeding season. The results revealed that population-level generalism
in habitat use in the yellow-legged gull arises through varying levels of individual specialization,
and individual spatial segregation within each habitat. Importantly, we found that the com-
bination of individual specialization and individual spatial segregation may reduce intra-specific
competition, with these 2 important mechanisms driving the success of this winning species.

KEY WORDS: Foraging strategies - Gulls - GPS - Habitat use - Individual specialization - Movement

ecology - Opportunistic seabirds - Seabird - Spatial ecology - Winning species

INTRODUCTION

Human activities are globally impacting ecosys-
tems, with important effects on biodiversity, includ-
ing extinction processes (McKinney 2006, Worm et
al. 2006). Species vary in their responses to human
perturbations; while most seem unable to cope with
drastic changes, others may persist, or even flourish
within human-transformed ecosystems (McKinney &
Lockwood 1999). The general pattern of expansion of
some widespread non-native and native species, so-
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$Advance View was available online May 15, 2017

called 'winners’, and the contraction of rare and often
endemic native species, so-called 'losers’, leads to a
biotic homogenization process. This has led to bio-
logical impoverishment worldwide (Olden et al. 2004).

Population expansions of winning species have
gained importance as a major conservation and man-
agement concern (Cardador et al. 2011, Sih et al.
2011, Newsome et al. 2015). The success of these
winners is widely attributed to their high adaptability
and behavioural plasticity, which allow them to
efficiently exploit opportunities provided by novel,
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human-modified environments (Shultz et al. 2005,
Clavel et al. 2011). Among marine predators, it is
well-known that some gull species are particularly
successful. They efficiently adapt to exploiting a
wide suite of novel resources that provide direct
biotic and abiotic benefits, including food, shelter
and refuge from predation (Ramirez et al. 2012,
Alonso et al. 2015, Osterback et al. 2015). These win-
ning seabirds are often perceived as pests because of
their impacts on urban areas, water reservoirs and
threatened species (Vidal et al. 1998, Skoérka et al.
2014, Rock et al. 2016). As a consequence, abundant
research has been conducted on these opportunistic
predators, mainly focused on their population dy-
namics, feeding ecology, pollution levels and patho-
gen load (e.g. Ramos et al. 2011, Payo-Payo et al.
2015). However, most of these studies consider
conspecifics as ecological equivalents. Although this
simplification can be useful to provide an overview of
population-level feeding preferences or population
dynamics (Ramos et al. 2011, Payo-Payo et al. 2015),
taking into account the individual component within
populations is essential for a better understanding of
the main ecological mechanisms related to the suc-
cess of winning species (Grémillet et al. 1999, Car-
dador et al. 2012, Chapple et al. 2012, Liebl & Martin
2014, Ceia & Ramos 2015, Potier et al. 2015)

Individual specialization occurs when some indi-
viduals within a population utilize only a subset of
the resources that the population uses as a whole.
This may be expressed via an animal's diet, patterns
of movement or other specific behaviour (Bolnick et
al. 2003, Matich et al. 2011, Ceia & Ramos 2015).
Individual specialization may vary between popula-
tions and across species, which may further enhance
ecological consequences at the individual level (Bol-
nick et al. 2003, Araujo et al. 2011). Variation in indi-
vidual specialization directly affects the population
dynamics of winning species, by facilitating their
adaptability to a large suite of environmental con-
ditions, while reducing competition among con-
specifics (Bolnick et al. 2003, Tinker et al. 2007, Dall
et al. 2012, Liebl & Martin 2014). Thus, taking into
account the individual component should allow for
a better understanding of ecological processes. In
addition, knowing the degree of individual special-
ization in winning species that negatively affect
human or wildlife health may help to implement
more effective management actions (Sanz-Aguilar et
al. 2009, Bowen & Lidgard 2013, Ceia et al. 2014).

In the present study, we investigated the spatial
ecology of the opportunistic yellow-legged gull Larus
michahellis in a breeding population of southeastern

Spain, to examine its degree of individual specializa-
tion in habitat use. This species is a clear example of
a winning predator in southern Europe, as a result of
its ability to efficiently exploit a diverse suite of novel
resources (e.g. Alonso et al. 2015, Payo-Payo et al.
2015, Martinez-Abrain & Jiménez 2016). This gull is
also considered a pest within urban, agricultural and
coastal areas (Vidal et al. 1998). Based on previous
information (Ceia et al. 2014, Tyson et al. 2015, Ceia
& Ramos 2015), we hypothesized that yellow-legged
gulls present a significant level of individual differ-
ences in habitat use. Specifically, we predicted that
individuals within the population would show niche
segregation with respect to habitat use. To test for
such individual strategies, we applied metrics previ-
ously used to identify diet specialization (Bolnick et
al. 2002, Fodrie et al. 2015). These metrics were
applied to spatial data obtained from 18 yellow-
legged gulls that were GPS-tracked simultaneously
during 4 wk of the breeding season (Bouten et al.
2013). This is one of the first studies to investigate the
spatial movements of this gull species continuously
across several weeks (see Ceia et al. 2014).

MATERIALS AND METHODS
Fieldwork procedures

Fieldwork was carried out at the natural protected
Biosphere Reserve of Marismas del Odiel (37°13'N,
6°59' W, Gulf of Cadiz, SW Iberian Peninsula; Fig. 1)
in a colony of 250 to 300 breeding pairs. To in-
vestigate spatial movements during the breeding pe-
riod (May 2015), we deployed high-resolution GPS-
trackers recording the positions of individuals at
5 min intervals (www.UvA-BiTS.nl; Bouten et al.
2013) on 18 breeding adult gulls >4 yr old. Age was
determined from plumage characteristics. Incubating
birds were caught at the nest using a walk-in wire
mesh trap and devices were attached using a wing
harness fixed with a reef knot in the tracheal pit, an
attachment method recommended for large gulls (see
Thaxter et al. 2014, 2016). The GPS logger and har-
ness weighed less than 1.8 % of the body mass of the
birds (19 g for the GPS versus 1062 + 120 g [mean +
SD] for the tracked gulls), less than the 3 to 5%
threshold suggested for seabirds (Phillips et al. 2003,
Passos et al. 2010). GPS data were downloaded re-
motely through a local base station and automatically
uploaded to the central database (Bouten et al. 2013).
To avoid potential biases associated with differences
between individuals in the number of days with GPS
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Fig. 1. (A) Study area showing the filtered GPS locations of the 18 tracked yellow-legged gulls Larus michahellis during the
2015 breeding season; (B) example of the habitats exploited by a generalist individual; and (C) example of an individual that
specializes in the use of fish farm habitats

data and the potential differential spatial behaviour
during the breeding period, we focused our analyses
on the time period from 14 May to 15 June 2015 (incu-
bation period). We considered only locations recorded
outside the colony (using a radius of 500 m around
each nest) and we removed all travelling locations
(speed >4 km h™!; Navarro et al. 2016). The total num-
ber of GPS locations ranged from a mean of 8200 to
9129, with a mean of 8644 + 495 locations ind.™.

Individual specialization and individual spatial
segregation

Individual specialization in habitat use by each
tracked yellow-legged gull was quantified following
Bolnick et al. (2002) and Fodrie et al. (2015). Specifi-
cally, we calculated the proportional habitat use by
each yellow-legged gull as the number of habitat-
specific positions divided by the total number of GPS
positions recorded during the entire tracking period
for a particular individual. Habitat was determined
by merging all filtered foraging GPS locations with
high-resolution land cover information (SIOSE, Soil
Information System of Spain, Junta de Andalucia;

scale was 1:2500; last update 2011). Using this in-
formation, we calculated the proportional similarity
index (PSi) following Schoener (1968). PSi is a meas-
ure of individual specialization based on habitat-
by-habitat deviations in an individual's habitat use
relative to population level, average habitat use (0 =
more specialized; 1 = more generalist). PSi is based
on the average pairwise overlap of the niche distribu-
tion of individuals and the population (Bolnick et al.
2002). Mean PSi among individuals was used to
determine the average amount or prevalence of
individual specialization in habitat use in the popula-
tion (IS). We ran Monte Carlo permutations to test
whether observed PSi values differed significantly
from a random distribution of values subsampled
from the population. We randomly reassigned habi-
tat use for each yellow-legged gull in equal propor-
tion to our observed data, and then calculated indi-
vidual and population-level metrics for the random
population. We generated random habitat use data
for 10000 populations, thereby creating a null distri-
bution of PSi values. We concluded that individuals
were not sampling from a shared distribution of
habitat use if our observed PSi values were <95 % of
all randomly generated values (Aratjo et al. 2007).
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All of these analyses were per-
formed using the RInSp package

Table 1. Habitat type and the main potential behaviours of the yellow-legged gull

Larus michahellis

(Zaccarelli et al. 2013) in the soft-

Main potential behaviours

ware package R (R Core Team Habitat type
2015). Pearson correlation tests Sea
indicated that no significant rela- Estuary
tionship exists between the num-

ber of GPS positions and the PSi Wetland
values at the individual level (p =

0.71). We did not consider a sex Beach
effect because no significant Fishing port
differences in PSi values were Fish farm
found between sexes (ANOVA Saltpans
tests: F; 17 =1.92, p=0.19). Water pond

In addition to the PSi values,
we quantified the degree of indi-
vidual spatial segregation within
each habitat using Schoener's
overlap index D-metric (Schoener
1968), indicating the relative use
of particular microhabitats (Fried-
laender et al. 2011). For this, we

Agriculture area
Urban

Garbage dump

Foraging (marine resources and fishery discards)

Foraging (estuarine fish and crustaceans)
Resting and socializing

Foraging (fish and other resources such as bird chicks or eggs)
Resting (safe places)

Scavenging (dead cetaceans/fish and human food)
Scavenging (fishery discards)
Foraging (farm fish)

Foraging (fish and crustaceans)
Resting (safe places)

Foraging (fish)

Cleaning (freshwater)

Resting (safe place)

Foraging (olives, insects and other terrestrial prey)

Scavenging (human food)
Foraging (urban birds and other prey)
Cleaning (freshwater ponds in urban parks)

Scavenging (human food)
Preying (small mammals and insects)

overlaid all filtered locations onto

a grid of 100 m? (corresponding to the minimum area
used by the tracking gulls in the present study) to
estimate the proportion of locations in any grid cell.
The cell size was based on the minimum area encom-
passing a single habitat. D-metric values of 1 indicate
a complete spatial overlap between 2 yellow-legged
gulls in a pair, whereas values of 0 indicate complete
spatial segregation. ANOVA and post hoc tests were
applied to test differences in the D-metric index
between individuals.

RESULTS

Based on the 28 917 filtered locations recorded dur-
ing 1 mo of the 2015 breeding season from the 18
tracked yellow-legged gulls, we detected the use of
11 different habitats (Table 1, Figs. 1 & 2). At the
population level, the relative use of each habitat (per-
centage of total locations) ranged from 28.4 % for fish-
ing ports and estuaries (22.3 %) to ~1.0 % for garbage
dumps, agricultural lands and fish farms (Fig. 2).

Individual specialization in habitat use

At the individual level, we found PSi values rang-
ing from 0.37 to 0.78, with specialized individuals
(low PSi values) mainly exploiting habitats such as
fish farms, sea or estuarine areas, and less special-

ized individuals (high PSi values) using a higher
diversity of habitats (Fig. 2). Monte Carlo analyses of
individual-versus-population niche variation indicated
that specialized individuals were significantly preva-
lent within the population (IS = 0.52, p < 0.001; Fig. 2).

Individual spatial segregation within each habitat

Based on D-metric values (spatial segregation
between individuals within the same habitats), we
found marked differences between habitats (Fy 1710 =
136.69, p < 0.001; Fig. 3). Post hoc tests indicated that
spatial overlap between individuals was significantly
higher in garbage dumps (D-metric = 0.78 + 0.06),
followed by water ponds, fish farms and fishing ports
(D-metric ranging from 0.36 to 0.41), and estuaries
(D-metric = 0.24 + 0.15). The lowest spatial overlap
values were found for urban, wetland, saltpans, beach,
sea and agricultural areas (D-metric ranging from 0
to 0.16) (Fig. 3).

DISCUSSION

We examined the spatial ecology of yellow-legged
gulls to test the degree of individual specialization in
their habitat use, by tracking 18 individuals simulta-
neously over 1 mo during the breeding period. Our
results support the hypothesis about winning spe-
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specialized; 1 = more generalist). Mean habitat use and the prevalence of individual specialization in habitat use in the
population (IS; black dot in the population bar) are also represented (right bar)

cies, as they revealed a high diversity of habitats
used by the yellow-legged gulls. Moreover, in accor-
dance with ecological theory related to generalist
species (Bolnick et al. 2003, Aratjo et al. 2011), we
also showed that variation within the population pre-
dominately derives from individual specialization in
habitat use. Importantly, we found that the degree
of spatial segregation between individuals differed
markedly between habitats.

At the population level, yellow-legged gulls were
able to use up to 11 main habitats present both in
marine and terrestrial domains, including natural
and human-made habitats. This high plasticity re-
flects the pronounced ability and behavioural flexi-
bility of the yellow-legged gull to exploit a diverse
suite of trophic resources, some of which are novel
resources provided by humans, or use them for other
activities such as resting, bathing or socializing. For
example, it has been reported that in the marine
environment or in fishing ports the yellow-legged
gull exploits marine resources by foraging on natural
prey in the open sea, or opportunistically forages on

fishery discards (Duhem et al. 2003, Ramos et al.
2009). In the saltpans, estuaries and wetlands, birds
exploit different resources such as fish, crustaceans
and bivalves, predate on eggs and chicks of other
birds, or use undisturbed areas to rest or socialize
with conspecifics (Bosch 1996, Munilla 1997, Vidal et
al. 1998, Buechley & Sekercioglu 2016). In beaches or
urban areas, individuals scavenge on organic matter
present in human waste or dead marine organisms,
predate on urban vertebrates such as pigeons, or use
the ponds present in the urban parks to bath or drink
freshwater (Britton & Morton 1994, Buechley & Seker-
cioglu 2016, Huig et al. 2016). In some specific habi-
tats such as water ponds, in addition to preying on
amphibians or freshwater fish, the gulls wash their
feathers or rest (Sebastidn-Gonzalez et al. 2012). Most
published studies indicate the high importance of
trophic resources present in garbage dumps for the
yellow-legged gull (Duhem et al. 2003, Ramos et al.
2009). Surprisingly, in our study, the importance of
this habitat was very low. This result may be related
to the low availability of urban dumps in the area
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means of habitats with the same letter were not significantly different

covered by GPS-tracked individuals (Navarro et al.
2016).

Although all GPS-tracked vyellow-legged gulls
could potentially exploit all available habitats, based
on PSi values—a metric to test individual special-
ization (Bolnick et al. 2002, Fodrie et al. 2015)—
we found clear differences in habitat use among in-
dividuals within the population. These results are
coherent with the prediction that some generalist or
opportunistic species are composed of ecologically
heterogeneous individuals that repeatedly differ in
behaviour and use of different subsets of available
resources (Bolnick et al. 2002, Bearhop et al. 2004,
Bell et al. 2009). Individual specialization is known to
be widespread across a diverse set of taxa (Bolnick et
al. 2003, Bell et al. 2009, Ceia & Ramos 2015), includ-
ing different seabird species and other marine pred-
ators (e.g. Vander Zanden et al. 2010, Votier et al.
2010, Masello et al. 2013, Ceia & Ramos 2015, Tyson
et al. 2015, Towner et al. 2016, Yurkowski et al.
2016). In general, individual specialization may have
a strong impact on ecological processes and popula-
tion dynamics, and there is evidence that this mech-
anism may reduce intra-specific competition among
individuals, increase individual foraging efficiency
and improve breeding success (Pierotti & Annett
1991, Bolnick et al. 2003, Woo et al. 2008, Aratjo et

al. 2011). For this reason, the existence of individual
specialization within populations of winning species
could partially explain their success (Grémillet et al.
1999, Cardador et al. 2012, Chapple et al. 2012, Liebl
& Martin 2014, Ceia & Ramos 2015, Potier et al.
2015). Specifically, individual specialization could
help opportunistic species to exploit the wide range
of ecological opportunities provided by human activ-
ities (food or shelter, among others) in heterogeneous
landscapes, thereby becoming more competitive
than losing species (Carrete et al. 2010, Cardador et
al. 2011, Layman et al. 2015, Newsome et al. 2015,
Robertson et al. 2015).

The high degree of specialization across yellow-
legged gulls of southern Spain has management and
conservation implications related to the implementa-
tion of effective actions to reduce specific impacts on
human or conservation interests (Sanz-Aguilar et al.
2009, Bowen & Lidgard 2013). For example, if the
owners of fish farms wish to reduce the potential
impact of yellow-legged gulls on their installations,
one tractable management option is to remove gulls
that specialize in this resource. One piece of clear
evidence of the efficacy of such targeted measures is
the reduction of the predation of the European storm
petrel Hydrobates pelagicus by yellow-legged gulls,
through the removal of specific petrel predators
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within the gull population (Sanz-Aguilar et al. 2009).
However, it is important to point out that although
these management measures could be efficient in the
short term, other individuals can occupy the empty
niche over longer periods.

Interestingly, we also found that the degree of spa-
tial segregation between yellow-legged gulls differed
between habitats. Based on the principle of compe-
titive exclusion, competing individuals exploiting
similar habitats are expected to segregate, especially
when particular resources are limited (Gause 1973,
Pianka 2000). Although we did not measure the
availability of trophic resources or other types of
resource related to other particular behaviours in
each habitat, some of these observed differences may
be explained by inter-habitat differences. For exam-
ple, in garbage dumps or fish farms, high availability
of resources and limited profitable surface area could
allow some degree of spatial overlap between indi-
viduals exploiting similar trophic resources (Cortés-
Avizanda et al. 2012, Arizaga et al. 2014). In contrast,
in other habitats with prey resources for gulls, such
as fishery discards at sea, individuals probably need
to segregate in space to find food, or to reduce com-
petition between conspecifics or with other bird spe-
cies (Navarro et al. 2013, Patrick et al. 2014, Tyson et
al. 2015). For this reason, the different degrees of
individual spatial segregation between habitats may
be viewed as a consequence of the distribution or
availability of the resources used by gulls, or as a
potential mechanism to reduce intra-specific compe-
tition (Bolnick et al. 2007, Matich et al. 2011, Robert-
son et al. 2015).

CONCLUSIONS

Our findings revealed that population-level gener-
alism in habitat use in the yellow-legged gull arises
through varying levels of individual specialization in
habitat use and individual spatial segregation within
each habitat, rather than all individuals being broad
generalists. This combination of individual speciali-
zation and individual spatial segregation may reduce
intra-specific competition, serving as 2 important
mechanisms related to the success of these winning
species in comparison to other, less successful spe-
cies. Further multispecific investigations involving
long-term GPS-tracking data covering the annual
cycle of different colonies located in different envi-
ronmental contexts would be useful to confirm that
individual specialization in habitat use is a common
phenomenon in winning and successful predators.
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ABSTRACT: Connecting the life history stages of the annual cycle via carry-over effects crucially
informs estimates of mortality and reproduction. This study explores variables linking the breed-
ing and wintering seasons in a pursuit-diving seabird, the thick-billed murre Uria lomvia. We
deployed global location sensing loggers on chick-rearing murres breeding in the southeastern
Bering Sea to examine subsequent overwinter locations and foraging behavior. In the tracked
individuals, we measured individual telomere length and longitudinal telomere length changes in
blood and used feathers molted during fall and early spring to assess trophic niche (via stable iso-
topes) and stress levels (as reflected in feather corticosterone levels). Longitudinal changes in
telomere length were better predicted by winter diving parameters than by geographic distribu-
tion and movement variables, such that birds that foraged more intensely (more time diving, more
dive bouts) also experienced higher telomere loss. This indicates that in a pursuit-diving species
with high flight costs, patterns of water-column use through diving may be more important than
horizontal spatial movement for predicting physiological changes underlying carry-over effects.
We conclude that telomere dynamics might be used as an indicator connecting behavior and
physiological stress from season to season.

KEY WORDS: Telomeres - Carry-over effects - Feather corticosterone - Stable isotope analysis -

Migration - Thick-billed murre - Uria lomvia - Wintering grounds - Geolocator

INTRODUCTION

Carry-over effects are often important drivers of
population processes, including individual reproduc-
tive success, especially in migratory animals (Norris
& Taylor 2006, Holmes 2007, Morrissette et al. 2010).
These effects describe situations in which fitness-
related outcomes in one season are affected by suc-
cess or state in a previous season (O'Connor et al.
2014). Many carry-over effect studies describe how
quality of winter habitat and diet affect phenology
and reproductive success of subsequent breeding
seasons (Reudink et al. 2009, Sorensen et al. 2009,
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Drake et al. 2013), while others describe effects of the
breeding season on the non-breeding period (Stutch-
bury et al. 2011, Schultner et al. 2014b). However, the
proximate physiological changes that accompany
these effects are not as well studied.

One of the strongest components of carry-over
effects is quality of the winter environment. Winter
habitat choice (Reudink et al. 2009, Inger et al. 2010,
Angelier et al. 2013, Gonzdlez-Prieto & Hobson 2013)
and diet (Sorensen et al. 2009) can strongly influence
performance and condition during subsequent breed-
ing seasons. At the same time, quality and domi-
nance status may influence access to wintering habi-
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tat (Rockwell et al. 2012, Angelier et al. 2013), so that
these effects may be a combination of extrinsic (envi-
ronmental) or intrinsic (reflecting individual quality
through habitat access) factors. Some studies indi-
cate that these carry-over effects are mediated inter-
seasonally by glucocorticoid stress hormones (Sander-
son et al. 2014), levels of which elevate in response to
poor environment or low food availability. For exam-
ple, elevated corticosterone in blood plasma indi-
cates nutritional stress in common murres Uria aalge
(Kitaysky et al. 2007).

In this study, we use physiological measures and
biologging to explore the relationship between vari-
ables associated with the non-breeding period (win-
tering variables) and inter-annual telomere dynamics
in the thick-billed murre U. lomvia (hereafter murre).
We deployed geolocation and depth loggers to track
murre location and diving behavior during migration
and wintering in the North Pacific (Orben et al.
2015). As habitat use may change within the winter-
ing period (e.g. Takahashi et al. 2015), we also com-
pare diet and stress variables measured in plumage
molted during fall and spring. Stable isotope values
in feathers reflect diet during the molt in which they
were grown (Becker et al. 2007, Bourgeon et al.
2014). Specifically, stable isotope values for nitrogen
(ratios of N/N as compared to an international
standard; 8!°N) provide a proxy for the trophic level
of foraging (Karnovsky et al. 2012), which may influ-
ence reproductive parameters via carry-over effects
(Sorensen et al. 2009). During the breeding season,
murres at our study colonies eat a mixture of prey
including invertebrates (squid and euphausiids) and
fish (especially juvenile pollock Gadus chalcogram-
mus) (Harding et al. 2013). In general, higher
trophic-level prey (i.e. fish) are a higher-quality food
source, since they have high protein and fat content
and do not require energy expenditure to excrete
excess salt (Nehls 1996). Thus, a diet of high-quality,
high trophic-level prey may contribute to recovery
from the breeding season. Fish and squid may also
require more skill to catch, since they are active
swimmers which must be pursued (Kokubun et al.
2016). Therefore, access to this high-quality prey
may be more dependent on diving skills than
patterns in spatial use.

Telomeres are non-coding DNA repeats which cap
eukaryotic chromosomes and function to protect
DNA (Monaghan & Haussmann 2006). Degradation
of telomeres occurs when cells divide, and loss rates
are accelerated by oxidative damage (von Zglinicki
2002). Telomere length (TL) is considered a potential
indicator of individual state or quality and is increas-

ingly used in ecology as an indicator of biological age
(Monaghan & Haussmann 2006, Barrett et al. 2013).
Short TL and loss of TL may be related to variation in
migration distance (Plot et al. 2012), elevated breed-
ing stress (Schultner et al. 2014a), lower survival
(Salomons et al. 2009, Barrett et al. 2013), or poor-
quality wintering habitat (Angelier et al. 2013), mak-
ing telomere dynamics a good candidate for reflect-
ing patterns in carry-over effects. TL loss has also
been used as a cost of reproduction in avian systems
(Bauch et al. 2013, Sudyka et al. 2014). However,
there are still many links to be made between telo-
mere dynamics, individual quality, and survival
(Monaghan 2010). Some studies, especially of long-
lived species, have not found relationships with
longevity (Pauliny et al. 2006) or changes in body
mass and survival (Pauliny et al. 2012). In thick-billed
murres, TL is related to physiological stress (baseline
corticosterone) (Young et al. 2016) and interacts with
habitat quality to predict patterns in foraging behav-
ior during the breeding season (Young et al. 2015).
Links to other phases of the annual cycle, however,
have not been tested.

The stress hormone corticosterone is passively
deposited into feathers as they are grown; thus, the
concentration of corticosterone in feathers acts as an
integrated measure of stress experienced during
feather growth (Bortolotti et al. 2008, Lattin et al.
2011). Feather corticosterone (fCORT) is linked to
use of high-quality wintering grounds during migra-
tion in great skuas Stercorarius skua (Bourgeon et al.
2014), overwinter survival in house sparrows Passer
domesticus (Koren et al. 2012), and nutritional stress
in rhinoceros auklets Cerorhinca monocerata (Will et
al. 2015). Our use of feathers from 2 parts of the body
allows evaluation of stress levels in fall and in spring.

This study addresses the relationship between TL
and change and wintering variables. Wintering vari-
ables included diving variables (average dive depth,
dive bouts per day, and a measure of foraging inten-
sity), spatial variables (winter home range area and
maximum distance from colony), fall and spring
fCORT, and fall and spring 8'°N values. We test (1)
the effect of TL (in year 1) on wintering variables; (2)
the effect of wintering variables on the annual
change in TL (ATL); and (3) the possible effects of TL,
ATL, and wintering variables on subsequent breed-
ing probability. We predict that TL will explain vari-
ation in wintering variables, indicating more effort
(e.g. high fCORT, large winter home range, high for-
aging intensity) or lower foraging ability (lower §'°N
values) in birds with short TL (Prediction 1). TL may
act as an integrative measure of individual state
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(Monaghan & Haussmann 2006, Barrett et al. 2013),
so this prediction describes a carry-over effect by
which accumulated life history may affect behavior
in the upcoming winter. Second, we test the relation-
ships between wintering behaviors and ATL. Murres
have some of the most energetically expensive avian
flight (Elliott et al. 2013), but their wing-propelled
pursuit-diving behavior allows them to exploit the
oceanic environment in a third dimension, diving to
depths of over 200 m (Orben et al. 2015). We predict
that diving behaviors will be more important predic-
tors of telomere changes than spatial variables (e.g.
winter home range area, maximum distance from
colony) (Prediction 2). Third, we test for a relation-
ship between wintering variables and subsequent
breeding. If telomeres mediate carry-over effects,
then wintering variables associated with TL will be
associated with subsequent breeding (Prediction 3).
We also directly test the effect of TL in deployment
year and TL change between years on breeding
probability.

MATERIALS AND METHODS
Field sampling

Geolocation loggers and time-depth recorders
(LAT2500 and LAT1500, Lotek Wireless) were de-
ployed on breeding thick-billed murres during July
and August of 2008 and 2009 at 2 of the Pribilof
Islands (St. Paul Island: 57° 10" N, 170° 17' W; and St.
George Island: 56°34'N, 169°36’' W) and at Bogoslof
Island in 2008 only (63°55'N, 168°02' W) (Orben et
al. 2015). The colonies are located in the southeast-
ern Bering Sea, Alaska, and murres at all 3 colonies
conduct short-distance migrations, either in the
vicinity of the colonies or nearby in the western
Bering Sea, Gulf of Alaska, or North Pacific (Orben et
al. 2015). Loggers were retrieved 1 to 2 yr after de-
ployment (n =49), also in July and August, and blood
samples and measurements were taken again. Most
birds (n = 39) were blood sampled in both years,
allowing calculation of ATL. Of the remaining 10
birds, 9 were only sampled in the year of device de-
ployment, and 1 was only sampled in the year of
retrieval. Blood samples (<0.5 ml) were taken from
the wing vein, preserved in a 2% EDTA buffer, and
stored at the University of Alaska Fairbanks in a
glycerol storage buffer at —-80°C. Body size was cal-
culated as a principal component of wing, tarsus, and
culmen measurements. Principal component 1 (PC1)
explained 51 % of the variation, and all 3 variables

were negatively correlated with PC1 (mean: —-0.72 =
0.01), so the inverse PC1 score was used as body size.

Geolocation and diving data

Geolocator data were analyzed as in Orben et al.
(2015). After filtering erroneous locations, we used a
generalized additive model to smooth latitude and
longitude over time. Winter home range area was
calculated as the minimum convex hull area of high
residency time based on a radius of 60 km. High res-
idency locations were identified as the upper quartile
of residence time for each murre (Orben et al. 2015).
Loggers recorded pressure conditionally every
minute below 5 dbar (5 m). Using maximum likeli-
hood estimates, dive bout end criteria were calcu-
lated for each murre (DIVEMOVE 1.3.4; Luque &
Guinet 2007), and dives were separated into bouts
when 25.7 min occurred between dives (Orben et al.
2015). Migration and diving were analyzed at either
the annual level (e.g. maximum distance from the
colony) or the seasonal level (e.g. fCORT levels in fall
or spring). Seasonal divisions were as follows: fall =
September, October, November; winter = December,
January, February; and spring = March, April, May.
Diving variables of interest were the percent of the
day spent diving, bout duration, dives per bout, and
percent of the bout diving. These variables were all
positively correlated (mean correlation = 0.53, mean
variance inflation factor = 17.9), so they were col-
lapsed into 1 foraging intensity variable using a prin-
cipal component analysis. The variance explained by
PC1 was 65%, and all factors had strong positive
loadings (Table 1).

Laboratory techniques

Telomeres were measured using the telomere rest-
riction fragment assay following Young et al. (2015).
Briefly, 5 pl of packed red blood cells were extracted

Table 1. Measures of thick-billed murre foraging intensity.
Variable loadings and correlations from the first principal
component of a principal component analysis

Variable Loading Correlation
Percent of 24 h diving 1.38 0.768
Bout duration 1.47 0.819
Dives per bout 1.73 0.963
Percent of the bout diving 1.16 0.646
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into agarose plugs using the Chef Genomic DNA
Plug Kit (Bio-Rad). DNA was separated on a 0.8%
agarose gel using pulsed field gel electrophoresis. TL
values were calculated from gel images following
Salomons et al. (2009) and Young et al. (2015). Longi-
tudinal samples from the same individual were ana-
lyzed in adjacent lanes, and gels included 2 control
samples per gel to determine intra-assay variability
(CV =range/mean; mean CV = 4.7 + 1.4%). TL val-
ues were standardized to these control samples to
reduce the potential effects of inter-assay variability.

For 8'°N and fCORT analyses, we sampled breast
feathers grown in the autumn and throat feathers
from breeding plumage grown in February and
March (Gaston & Jones 1998). Stable isotope values
were analyzed using a Carlo-Erba elemental ana-
lyzer interfaced with a Finnigan Delta Plus XP mass
spectrometer (Light Stable Isotope Lab, University
of California Santa Cruz [UCSC]). Measurement
precision (standard deviation), based on within-run
replicates of the laboratory standard (pugel), was
0.14 %. Fall and spring 8'°N values were not corre-
lated (correlation = 0.261, 95% CI = -0.028 to 0.51).
For fCORT assays, throat (3 feathers) and breast (1
feather) feathers were weighed to the nearest mg
and measured to the nearest 0.5 mm. Throat feath-
ers were measured separately but were weighed to-
gether (Lattin et al. 2011). We followed methods
outlined in Bortolotti et al. (2008) but did not mince
feathers. Feathers were extracted in 5 ml of HPLC-
grade methanol (Fisher Scientific), sonicated for
60 min at 50°C, and incubated overnight in a 50°C
water bath. Whole feathers were analyzed in a sin-
gle radioimmunoassay (Wingfield & Farner 1975)
using a Sigma-Aldrich antibody (C8784) with an
intra-assay CV < 1%. Samples were combined with
2000 cpm of tritium-labeled corticosterone (NET399,
Perkin Elmer) to control for loss of hormone during
analysis. Final fCORT titers were adjusted for per-
cent recovery (mean 95%). Results were converted
to pg mm™ (Bortolotti et al. 2008). Fall and spring
fCORT values were correlated (correlation = 0.50,
95% CI =0.19-0.71), indicating that a murre stressed
in the fall is also likely to incur high stress in the
spring.

Analysis

Analysis was conducted in program R (R Develop-
ment Core Team 2011). Prediction 1 was addressed
using MANOVA, in which TL was the independent
variable, and dependent variables were a subset of

the wintering variables (foraging intensity, maxi-
mum distance from the colony, winter home range
area, fall §'°N values, spring 8'°N values, fall f{CORT
levels, and spring fCORT levels). Only 29 birds had
data for each of these variables and could be
included in the MANOVA. As fall fCORT demon-
strated an effect in the larger analysis, a follow-up
univariate ANOVA with a larger sample size (n =
34) was also run for this variable. For Predictions 2
and 3, models used the 'Im’' function in R and were
compared using Akaike's information criterion cor-
rected for small sample size (AICc). For Prediction
2, the models were ATL ~ X, where ATL was the
percent change in TL from deployment to recapture,
and X was wintering variables. ATL was usually cal-
culated from 1 yr to the following year, but in 4
cases telomeres were re-sampled after 2 yr; in these
cases, ATL was divided by 2 to indicate mean annual
change. In addition to wintering variables, we include
other measures likely to affect migration and TL:
year (of global location sensing deployment, first
capture), sex (Young et al. 2013, 2015), colony (Young
et al. 2015), body size (Barrett et al. 2013, Orben et
al. 2015), body mass, and the annual change in body
mass. Twenty-three birds had complete data and
could be used in this analysis. The variables which
most strongly limited sample size were the fall and
spring 8N values, so a secondary analysis was
done which excluded these variables but increased
the sample size (n = 31).

We addressed Prediction 3, the effect of wintering
variables on breeding in the following year, using
logistic regression. Wintering variables included max-
imum distance from the colony, winter home range
area, fall and spring 8N values, fall and spring
fCORT, and foraging intensity. Telomere variables
were deployment TL and ATL. We also tested the
effect of deployment year, sex, colony, change in
body mass from year 1 to year 2, and body size.
Twenty-one birds had complete data and could be
used in this analysis. Birds were recaptured at breed-
ing sites, so birds recaptured as ‘not breeding’ were
likely birds that failed very early in breeding or were
attending nest sites but deferred reproduction. Thus,
non-breeding recaptures represented birds that sur-
vived the winter but were unable or unwilling to suc-
cessfully breed. We could not distinguish between
birds that were not breeding due to high stress levels
or poor condition and those that may have failed for
extrinsic reasons; however, even in years with a high
reproductive failure due to extrinsic causes, poor
parental condition may still play a large role in deter-
mining which nests fail.
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RESULTS

Eifect of deployment TL on wintering variables
(Prediction 1)

A MANOVA in which TL was tested against forag-
ing intensity, maximum distance from the colony,
winter home range area, fall §'°N values, spring §'°N
values, fall fCORT, and spring fCORT was not signif-
icant (Pillai = 0.31, F;5; = 1.33, p = 0.28). However,
the univariate ANOVAs indicated that fall fCORT
may be positively related to TL (F; .7 = 6.0, p = 0.021).
A follow-up univariate ANOVA, which used a larger
sample size to test the relationship between fall
fCORT and TL (n = 34), also demonstrated the posi-
tive relationship (Fig. 1; p = 4.35 x 107 £ 1.82 x 107%).

Annual and seasonal predictors of telomere change
(Prediction 2)

We tested the effects of wintering variables on
longitudinal ATL. Models making up 95% of AICc
weight are presented in Table 2. Parameter estimates
were model-averaged using these models (Table 3).
The only parameter with an estimate that did not
overlap zero was foraging intensity. Foraging inten-
sity showed a negative relationship with ATL (Fig. 2),
such that birds that foraged more intensively (more
time spent diving, more dive bouts) lost more TL.

In the larger analysis, without stable isotope val-
ues, models making up 95 % of AIC weight were for-
aging intensity, year, null, maximum distance from
colony, sex, and body size. Foraging intensity re-
mained the best model (AAICc = 0), with the second
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Fig. 1. Deployment (breeding season) telomere length pre-
dicting feather corticosterone (fCORT) levels in thick-billed
murres, as measured in feathers grown during the fall

Table 2. Akaike's information criterion corrected for sample
size (AICc) output for models of wintering variables (as pre-
dictors) and change in telomere length (response variable in
the thick-billed murre). Presented are the model, the AAICc
value (difference between model AICc and the lowest AICc),
the AIC weight of the model (w, which indicates the pro-
portional support for this model), and a column summing
those weights to 95% of total weight. fCORT: feather
corticosterone value

Model AAICc w Sum w
Foraging intensity 0 0.379  0.379
Null 2.56  0.105 0.484
Year 2.64 0.101 0.585
Fall 8'°N value 3.15 0.0785 0.664
Body size 4.35 0.0430 0.707
Sex 4.42  0.0416 0.748
Mean depth 4.54 0.0391 0.787
Home range area 4.65 0.0370 0.824
Spring 8'°N value 4,76  0.0350 0.859
Maximum distance from colony 4.83  0.0338 0.893
Fall {CORT level 491 0.0324 0.926
Spring fCORT level 495 0.0319 0.958

Table 3. Weighted parameter estimates for models of winter-
ing variables and change in telomere length in the thick-
billed murre. Presented are the parameter, the weighted
estimate (based on models making up 95% of Akaike's in-
formation criterion weight), and the weighted standard de-
viation (SD). Parameter estimates that do not overlap zero,
indicating good predictive strength, are in bold

Parameter Weighted SD
estimate
Intercept 3.77 6.05
Foraging intensity -4.37 3.41
Year (2009) -1.12 1.44
Fall §"°N value 0.408 0.551
Body size 0.244 0.387
Sex (male) 0.217 0.351
Mean depth 0.00922  0.0155
Home range area 0.000 0.000
Spring 8"°N value 0.0491 0.0952
Maximum distance from colony -0.00123  0.00263
Fall f{CORT level 0.0122 0.0338
Spring fCORT level 0.0122 0.0457

model having a higher AAICc (year, AAICc = 4.02).
Foraging intensity also remained the only parameter
with a weighted estimate that did not overlap zero
(weighted f = -3.61 + 2.35).

Telomere change, wintering variables, and
subsequent breeding (Prediction 3)

Models with the lowest AAICc for predicting
breeding status in the recapture year (0 = non-breed-
ing; 1 = breeding) were foraging intensity, body size,
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Fig. 2. Percent change in telomere length (ATL) from one

breeding season to the next predicted by foraging intensity

in the thick-billed murre. See Table 1 for details of the
foraging intensity principal component

Table 4. AICc output for models predicting successful breed-
ing in the thick-billed murre. See Table 2 for details

Model AAICc w Sum w
Foraging intensity 0 0.375 0.375
Body size 1.83 0.150 0.525
Change in body mass 2.57 0.104 0.629
Null 3.39 0.0688 0.698
Year 4.25 0.0448 0.742
Fall fCORT level 4.49 0.0397 0.782
TL 490 0.0323 0.814
Maximum distance from colony 4.94 0.0317 0.846
Spring 8'°N value 511 0.0291 0.875
Spring fCORT level 5.26  0.0270 0.902
Home range area 543 0.0248 0.927
Sex 5.58 0.0231 0.950

and the change in mass (Table 4). However, all
model-averaged parameter estimates overlapped
zero (Table 5), indicating little influence of these
variables on successful reproduction. Eliminating
variables that did not perform well and limited the
sample size allowed an increase to n = 35 but did not
change the results (not shown).

DISCUSSION
TL and wintering variables
We found that deployment TL did not predict spa-

tial wintering variables or foraging intensity but may
be related to winter fCORT levels. Birds with longer

Table 5. Weighted parameter estimates for models predicting suc-
cessful breeding in the thick-billed murre. Presented are the pa-
rameter, the weighted estimate (based on models making up 95 %
of Akaike's information criterion weight), and the weighted stan-
dard deviation (SD). All parameter estimates overlap zero, indica-
ting low predictive strength. fCORT: feather corticosterone value;

TL: telomere length

Parameter Weighted SD
estimate

Intercept 0.229 1.25

Foraging intensity -0.843 1.18

Body size 0.356 0.664

Change in body mass —-0.000932 0.00184

Year (2009) —-0.0568 0.125

Fall f{CORT level -0.0104 0.0236

TL 0.00000790  0.0000189

Maximum distance from colony 0.000534 0.00129

Spring 8N value 0.0104 0.0262

Spring fCORT level —-0.00713 0.0186

Home range area -0.000000124 0.000000350

Sex (male) 0.0114 0.0358

TL had higher fCORT in the autumn (Fig. 1). Long TL
may indicate high-quality individuals (Le Vaillant et
al. 2015) that may have invested heavily in offspring,
behaviorally or energetically. TL in murres is associ-
ated with breeding season foraging patterns, espe-
cially depth and choice of water masses (Young et al.
2015). Behavioral changes such as increased depth
and trip duration led to higher post-breeding stress in
rhinoceros auklets (Will et al. 2015), and similar pat-
terns may drive post-breeding stress in murre f{CORT
as well. TL did not predict the location of wintering
but may indicate individuals suffering carry-over
effects from the breeding season, potentially due to
lack of experience or high reproductive effort, al-
though we cannot demonstrate a causal role for TL
affecting fCORT.

Overwinter behaviors and ATL

Our second prediction was supported by the win-
tering data; foraging intensity, a principal component
made up of diving-related behaviors, was a good
predictor of ATL (Tables 2 & 3). Murres with high for-
aging intensity scores (long bout duration, high per-
centage of time spent diving) lost more TL than those
with lower scores. Birds with high foraging intensity
may be inefficient foragers, recovering from stressful
breeding seasons, or of lower quality, but their
intense foraging is reflected in physiological changes
to telomeres. However, spatial wintering variables
(winter home range area and maximum distance
from the colony) did not perform well as predictors of
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telomere change. Murres have extremely high wing-
loading and flight costs but are adept wing-propelled
pursuit-diving foragers, specializing in catching
agile, fast-moving prey underwater. Species-specific
parameters related to the ability to extract energy
from the environment should drive quality indicators,
and telomeres were sensitive to these qualities, re-
lated to diving, in murres. Our findings support the
idea that in a specialist diver, variation in water col-
umn use is more associated with TL maintenance
than are flight patterns.

Although TL (and rates of change) have previously
been shown to differ by sex and breeding colony in
many species (reviewed in Barrett & Richardson
2011) including the thick-billed murre (Young et al.
2013), such differences were not found in this study.
However, male murres spend the first weeks after
colony departure with the fledgling, diving intensely
to supply both chick and self (Elliott & Gaston 2014).
Thus, telomere loss associated with intense foraging
may contribute to the sex differences found in other
studies. It should also be noted that, although many
of our ATL values were positive, a positive value is
unlikely to be a true telomere lengthening (Steen-
strup et al. 2013). Lengthening is likely due to short
follow-up time (1 yr instead of many years in a long-
lived species) and also to methodological constraints.
Therefore, we avoid interpreting a positive ATL as an
increase in TL but rather as TL maintenance or a re-
flection of relative differences in food availability or
other conditions affecting those birds.

ATL and subsequent breeding

TL and ATL were not associated with the probabil-
ity of breeding in year 2. No parameter had an esti-
mate that was different from zero, but models of for-
aging intensity and body size had AAICc < 2. These
models indicated that deployment year body mass
was higher in birds that were breeding at recapture,
and their overwinter foraging intensity was lower.
This may indicate that the better condition of these
birds carried over into the next year, although the
results are not strong enough to make a definitive
conclusion and certainly not strong enough to infer
causation. We did find a relationship between ATL
and winter foraging intensity (previous subsection),
but this did not carry over to breeding probability.
Investigating longer time series of changes in forag-
ing and breeding parameters, in relation to changes
in body mass and ATL, would be a good subject for
future research on drivers of carry-over effects.

There are 2 likely explanations for the lack of rela-
tionship between TL variables and subsequent
breeding. It is possible that the birds which were
not recaptured had extremely high TL loss, but vari-
ation in ATL among recaptured birds was minimal,
regardless of breeding status. Alternatively, as non-
breeding status may be due to parental quality or
extrinsic causes, perhaps the murres recaptured as
non-breeders are not the lowest-quality individuals,
so their status is not associated with a quality indica-
tor. It would be useful to assess fledging probability
and adult survival in relation to TL and ATL. Perhaps
on a scale of several years, the cumulative effect of
winter stress and low trophic level diet will lead to fit-
ness outcomes.

CONCLUSION

TL did not predict the spatial wintering patterns
but may indicate individuals suffering high stress
due to carry-over effects from the breeding season.
Our findings also support the idea that telomeres, a
physiological quality indicator, were sensitive to a
species-specific parameter related to the ability to
extract energy from the environment, in this case
diving behaviors rather than spatial use. Winter for-
aging intensity was related to the maintenance of TL
from year to year, although causation cannot be
inferred. In this pursuit diver, variation in water col-
umn use was more important for maintaining TL than
the size of the wintering area and distances travelled.
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