Inter-Research > MEPS > v650 > p203-215  
MEPS
Marine Ecology Progress Series

via Mailchimp

MEPS 650:203-215 (2020)  -  DOI: https://doi.org/10.3354/meps13233

Measurement of swimming ability in larval marine fishes: comparison of critical speed with in situ speed

Jeffrey M. Leis*

Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7004, Australia, Ichthyology, Australian Museum Research Institute, Sydney, New South Wales 2001, Australia
*Corresponding author:
Advance View was available online March 12, 2020

ABSTRACT: For much of their pelagic larval dispersal (PLD) stage, larval perciform fishes are able to directly influence their dispersal by horizontal swimming, but it is unclear which means of measuring swimming ability is most appropriate for modelling dispersal and studying demographic and genetic connectivity. Most studies use critical speed (Ucrit), a laboratory flume measure derived by increasing flow until larvae can no longer maintain their position. Most swimming ability data on fish larvae are Ucrit, usually for larvae nearing the end of PLD. Recognizing that a forced laboratory measure is inappropriate for dispersal, researchers have used decreased Ucrit values, usually by 50%, and have argued that Ucrit is strongly correlated with more relevant swimming measures. Here I examined the suitability of Ucrit versus in situ speed (ISS), wherein speed of larvae is measured by divers following them in the ocean with a flow meter. Considerations of dispersal require inclusion of swimming ontogeny. Swimming speed regressions of speed on size of 10 species in 8 families showed that Ucrit and ISS are not well correlated. The Ucrit:standard length (SL) slope was greater than the ISS:SL slope in 6 species, and did not differ in the other 4 species. No overall metric, e.g. X% of Ucrit = ISS, was appropriate for conversion of Ucrit to ISS. Conversion of Ucrit to ISS is not straightforward. Ucrit measures swimming potential, not what larvae do in the ocean, whereas ISS directly measures larvae swimming in the ocean. Ucrit ontogeny is less variable, but ISS ontogeny is more relevant to dispersal. Ucrit may be useful for other purposes.


KEY WORDS: Critical speed · In situ speed · Swimming ontogeny · Larval dispersal · Dispersal models · Larval behaviour


Full text in pdf format
Cite this article as: Leis JM (2020) Measurement of swimming ability in larval marine fishes: comparison of critical speed with in situ speed. Mar Ecol Prog Ser 650:203-215. https://doi.org/10.3354/meps13233

Export citation
Share:    Facebook - - linkedIn

 Previous article Next article