Inter-Research > MEPS > Prepress Abstract

MEPS prepress abstract   -  DOI: https://doi.org/10.3354/meps13890

Northwest range shifts and shorter wintering period of an Arctic seabird in response to four decades of changing ocean climate

Allison Patterson*, H. Grant Gilchrist, Anthony Gaston, Kyle H. Elliott

*Corresponding author:

ABSTRACT: Climate change is altering the marine environment at a global scale, with some of the most dramatic changes occurring in Arctic regions. These changes may affect the distribution and migration patterns of marine species throughout the annual cycle. Species distribution models have provided detailed understanding of the responses of terrestrial species to climate changes, often based on observational data; biologging offers the opportunity to extend those models to migratory marine species that occur in marine environments where direct observation is difficult. We use species distribution modelling and tracking data to model past changes in the non-breeding distribution of thick-billed murres (Uria lomvia) from a colony in Hudson Bay, Canada, between 1982 and 2019. The predicted distribution of murres shifted during fall and winter. The largest shifts have occurred for fall migration, with range shits of 211 km west and 50 km north per decade, compared with a 29 km shift west per decade in winter. Regions of range expansions had larger declines in sea ice cover, smaller increases in sea surface temperature and larger increases in air temperature than regions where the range was stable or declining. Murres migrate in and out of Hudson Bay as ice forms each fall and melts each spring. Habitat in Hudson Bay has become available later into the fall and earlier in the spring, such that habitat in Hudson Bay is available for 21 days longer in 2019 than 1982. Clearly, marine climate is altering the distribution and annual cycle of migratory marine species that occur in areas with seasonal ice cover.