Inter-Research > AEI > Prepress Abstract
Aquaculture Environment Interactions

    AEI prepress abstract   -  DOI:

    Low-technology recirculating aquaculture system integrating milkfish Chanos chanos, sea cucumber Holothuria scabra and sea purslane Sesuvium portulacastrum

    Paula Senff*, Pierre-Philippe Blanc, Matthew Slater, Andreas Kunzmann

    *Corresponding author:

    ABSTRACT: Closed recirculation aquaculture systems (RAS) in combination with integrated multi-trophic aquaculture (IMTA) are considered best management practices, but high material costs and difficult maintenance still hinder their implementation, especially in developing countries and the tropics. Few case studies of such systems with tropical species exist. For the first time, an extremely low-budget system was tested combining the halophyte sea purslane Sesuvium portulacastrum and a detritivore, sandfish Holothuria scabra, with finfish milkfish Chanos chanos over 8 wk on Zanzibar, Tanzania. In a 2 m3 RAS system, milkfish and sea purslane showed good growth, producing an average (±SD) of 1147 ± 79 g fish and 1261 ± 95 g plant biomass, while sea cucumber growth was variable at 92 ± 68 g. The system operated without filter units and did not discharge any solid or dissolved waste. Water quality remained tolerable and ammonia levels were reliably decreased to < 1 mg l-1. A nitrite peak occurred within the first 30 d, indicating good biofilter performance of the different system compartments. Changes in dissolved inorganic nitrogen (DIN) species support the notion that the sea cucumber tank was the main site of nitrification, while the hydroponic halophyte tank acted as a net sink of nitrate. A nitrogen budget accounted for 63.7 ± 5.3% of the nitrogen added to the system as fish feed. Increasing the plant to fish biomass ratio to 5:1 would fully treat the DIN load. The experiment provides a proof-of-concept of a simple pilot-scale RAS, integrating tropical species at 3 trophic levels.