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INTRODUCTION

Recent advances in sequencing and improved
 single-cell and microscopic imaging techniques sug-
gest that the future of aquatic microbial ecology is
largely based on (meta-)omics and in situ single-cell
ap proaches (Stepanauskas 2012, Temperton & Gio-
vannoni 2012, Blainey 2013, Son et al. 2015). Envi-
ronmental meta-omics are undoubtedly important to
gain insight into thus far unknown processes and
functions of aquatic microbes (Rinke et al. 2013, Vila-
Costa et al. 2013, Ghylin et al. 2014), and single-cell

techniques allow for a precise quantification and/or
functional allocation of individual cells or popula-
tions (Amann & Fuchs 2008, Musat et al. 2008,
Stocker & Seymour 2012, Salcher et al. 2013). The
main advantages of these methods are their in situ
characteristics, i.e. the natural environment is not or
only slightly disturbed during sampling; moreover,
they do not rely on cultures and can be combined
with experimental approaches.

However, it is still essential to isolate and cultivate
the key players of aquatic systems to get ‘a holistic
picture’ of their ecology (Giovannoni & Stingl 2007).
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ABSTRACT: Representative model organisms form the basis on which biology is constructed, and
pure cultures offer many opportunities for discovery. However, our view of the importance of
axenic cultures changed dramatically at the turn of the last century upon realizing that the major-
ity of environmentally relevant microbes still remains uncultured. The sequencing revolution has
led us to a point where we can identify the microbial world in which we live, but many questions
remain regarding the autecology of planktonic microbes and their interactions with their environ-
ment. Thus, it is essential to isolate and cultivate the key microbial players to gain a deeper insight
into their ecology. If the past is a guide, the way forward in confronting the so-called ‘great plate
count anomaly’ is the use of more subtle and refined approaches to culturing, using a number of
methods and processes that are now becoming available. The vast amount of information accumu-
lated from genome sequencing alone has yet to result in the isolation of the most important and
abundant microbes of aquatic systems. We highlight the merits of pure cultures and discuss the
critical need to integrate information from a variety of different sources to isolate planktonic
microbes. We also describe how to culture bacteria of interest with a full cycle isolation approach
based on targeted enrichment and illustrate the benefits of pure cultures with 2 examples of
 isolated representatives of freshwater Betaproteobacteria.
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At the turn of the last century, at what can be termed
as the nascent time for the ‘-omics’ age, the realiza-
tion that >99% of the microbial world remains uncul-
tured came as a surprise in the dynamic field of
microbiology (Staley & Konopka 1985, Amann et al.
1995). Some decades ago, only microbes that are able
to grow in media with high concentrations of organic
nutrients and carbon sources had been cultivated
(Jannasch 1958, Allen et al. 1983, Hahn & Höfle
1998). However, such copiotrophic microbes (e.g.
Vibrio spp., Pseudomonas spp.) do not necessarily
 re present the natural community in freshwaters
where oligo- to mesotrophic conditions prevail.
Moreover, as most aquatic bacteria and archaea are
planktonic, they do not readily grow on agar plates,
although there are some exceptions (O’Sullivan et al.
2004, Cousin et al. 2008, Hutalle-Schmelzer et al.
2010, Jogler et al. 2011, Watanabe et al. 2012). Thus,
these cultivation ap proaches selected mainly for rare
co pio trophic taxa, a phenomenon
called ‘the great plate count anomaly’
(Staley & Konopka 1985, Amann et
al. 1995). Further improvements in
cultivation techniques, however,
have led to the isolation of environ-
mentally abundant oligo- to mesotro-
phic mic ro bes (Fig. 1) of freshwater
(Bruns et al. 2003, Hahn 2003, Hahn
et al. 2003, Gich et al. 2005) and mar-
ine systems (Schut et al. 1997, Rappé
et al. 2002, Könneke et al. 2005). As
solid media proved to be inefficient
for the isolation of obligate plank-
tonic microbes, most cultivation
efforts were made in liquid media
and a dilution of the inoculum to
0.5–5 cells sample−1 to obtain mono-
clonal cultures (dilution to extinction,
serial dilution; Connon & Giovannoni
2002, Bruns et al. 2003, Selje et al.
2005, Stingl et al. 2007). The main
improvements for a successful isola-
tion of microbes concerned the culti-
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Fig. 1. Maximum likelihood tree of 16S
rRNA genes of selected heterotrophic bac-
teria that were isolated from freshwaters
and their affiliation to typical freshwater
lineages proposed by Newton et al. (2011).
The genera Limnohabitans and Ca.
 Me thylopumilus (highlighted in bold) are
described in more detail in the main text.
The scale bar at the bottom represents 

10% sequence divergence
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vation media that were either synthetic and adapted
to natural oligotrophic conditions or sterilized lake
water amended with only low amounts of nutrients,
carbon sources, and vitamins (Bruns et al. 2003, Page
et al. 2004). Another isolation strategy for very small
microbes is the so-called filtration-acclimatization
method in ven ted by Hahn et al. (2003), where water
samples are filtered through 0.2 µm membranes to
remove larger organisms and the remaining ultrami-
crobacteria are adapted to higher concentrations of
complex media in a stepwise manner. This method
proved to be effective for the isolation of numerous
freshwater strains affiliated with Polynucleobacter
spp. and the Luna lineage of Actinobacteria (Hahn
2003, Hahn et al. 2003). Likewise, a selective enrich-
ment of the  target organisms prior to isolation can
significantly increase the cultivation success. Such
an enrichment of Sphingomonadaceae (Alphapro-
teobacteria) was achieved by the addition of growth
inducers to minimal medium (Gich et al. 2005, Jogler
et al. 2011) or by the addition of humic matter or
 phenol to sterile lake water (Hutalle-Schmelzer et al.
2010). The latter attempt also enabled enrichment
and subsequent isolation of a wide range of different
microbes from humic lakes (Hutalle-Schmelzer et al.
2010). Microbes which grow mainly on algal-derived
organic matter (e.g. Flavobacteriaceae, Comamon-
adaceae) can be en riched upon addition of algal
extracts or exudates to the cultivation medium or
might be isolated at times of algal blooms (Zeder et
al. 2009, Hahnke et al. 2015, Salcher et al. 2016).
Finally, fast-growing microbes like Limnohabitans
spp. or Flavobacterium spp. can also be enriched in
predator-free dilution cultures (Kasalický et al. 2013,
Neuenschwander et al. 2015). One example of a
 successful isolation of such fast-growing bacteria
 (Limnohabitans spp.) is described in more detail
below.

POSSIBLE REASONS WHY SOME 
OBLIGATE PLANKTONIC MICROBES STILL

RESIST CULTIVATION

A large number of prokaryotes isolated from
freshwaters have been validly described (Fig. 1).
However, the majority of these taxa have been iso-
lated on agar plates or in rich media and therefore
represent typical copiotrophs or ‘tychoplankton,’ i.e.
they are transient or not very abundant members of
the plankton, as signature sequences of these
microbes have rarely been recovered from environ-
mental samples (Newton et al. 2011). Notably, a

valid de scription of a novel species requires a depo-
sition of the type strain in 2 public culture collec-
tions to make it available to other scientists
(Kämpfer et al. 2003), and a prerequisite for the
deposition is a successful cultivation in synthetic
media and/or on agar plates. Obligate planktonic
prokaryotes that are hard to  cultivate rarely fall into
this category. For example, the most abundant mar-
ine microbes — the SAR11 clade — are still not
validly described (‘Ca. Pelagi bacter ubique’) and it
took more than 10 yr from the isolation of the first
SAR11 strains to a successful cultivation in defined
synthetic medium (Rappé et al. 2002, Carini et al.
2013). Only recently, a number of environmentally
relevant planktonic freshwater taxa have been
brought to culture (Fig. 1), e.g. Limno habitans spp.
(Hahn et al. 2010a,b, Kasalický et al. 2010, 2013),
Polynucleobacter spp. (Hahn et al. 2009, 2010c,
2011, 2012), ‘Ca. Methylopumilus spp.’ (Salcher et
al. 2015), Sphingomonas spp. (Hutalle-Schmelzer et
al. 2010, Jogler et al. 2011, Salka et al. 2014), Rho-
doluna spp. (Hahn et al. 2014), Fluviicola spp.
(O’Sullivan et al. 2005), and Flavobacterium spp.
(Cousin et al. 2008, Ali et al. 2009, Sack et al. 2011,
Lee et al. 2012).

The most abundant planktonic freshwater micro -
bes, i.e. Actinobacteria of the acI-lineage and
Alpha proteobacteria of the LD12 lineage (the fresh-
water sister group of SAR11), however, still resist
axenic cultivation. Both lineages are of very small
cell size (ultramicrobacteria), have streamlined
genomes, and follow a typical oligotrophic lifestyle
with adaptations to very low nutrient and carbon
concentrations (Salcher et al. 2011b, Zaremba-
Niedzwiedzka et al. 2013, Ghylin et al. 2014).
Streamlined oligotrophs are typically non-motile,
seem to be only slowly growing, and are character-
ized by poor metabolic plasticity, i.e. they are
unable to acclimate to resource-rich conditions.
However, they are extremely competitive in nutri-
ent-poor conditions of natural aquatic habitats and
seem to at least partially escape predation by pro-
tists (Yooseph et al. 2010). These ecological features
together with specific nutritional requirements and
potential auxotrophies for unknown compounds
may have hampered successful isolation thus far.
For example, although members of the acI lineage
have been repeatedly isolated or enriched via dilu-
tion to extinction (Gich et al. 2005, Selje et al. 2005,
M. M. Salcher unpubl. data), the initially dense
mono cultures stopped growing when propagated to
fresh sterile lake water medium, and all attempts to
keep cultures alive have so far been unsuccessful
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(M. M. Salcher unpubl. data). This hints at very spe-
cific adaptations to the environmental conditions at
the time of isolation, such as the presence of vital
un known growth substrates. Nevertheless, biomass
of these transiently cultivable microbes can be used
for whole-genome sequencing, thus providing infor-
mation about specific metabolic pathways that
might help to refine potential cultivation media (M.
M. Salcher unpubl. data). AcI Actinobacteria can be
grown in co-cultures for several generations
(Jezbera et al. 2009, Garcia et al. 2014), and 1 spe-
cies has been so far described as Candidatus (‘Ca.
Planktophila limnetica,’ Jezbera et al. 2009). It is
thus very likely that acI Actinobacteria live in close
contact and metabolic interconnectedness with co-
occurring mi crobes, i.e. they depend on metabolites
provided by others (Garcia et al. 2015, Garcia 2016).
Actinobacteria of the Luna lineage on the other
hand can be grown axenically in rich complex
medium, although they are also of very small size
and have reduced genomes (Hahn et al. 2003, 2014,
Hahn 2009).

BENEFITS OF PURE CULTURES

High-quality reference genomes

Whole-genome sequencing and
assembly is much easier and cheaper
from monocultures than from mixed
assemblages or single amplified cells
(SAGs), and unbiased high-quality
reference genomes can only be pro-
duced from axenic cultures. Genomes
assembled from metagenomic reads
(MAGs) are always a composite of
closely related taxa, as it is simply
impossible to reconstruct genomes of
individual strains in a mix of co-exist-
ing genotypes (Temperton & Giovan-
noni 2012). SAGs, on the other hand,
are intrinsically incomplete because
of difficulties in the flow cytometric
sorting, whole-genome amplification,
and sequencing of DNA from single
cells (Woyke et al. 2011, Clingenpeel
et al. 2014). Therefore, it cannot be
assessed whether particular genes or
pathways are indeed absent or in -
complete in SAGs and whether par-
ticular genomic traits are specific for
single genotypes in MAGs.

Reference for meta-omics and detection of
different genotypes in nature

Closed high-quality genomes from axenic cultures
can serve as references for a variety of meta-omics
approaches and for the design of specific primers and
probes (Fig. 2). Indeed, fragment recruitment of
meta genomic reads to full genome sequences has
been repeatedly used to identify hypervariable re -
gions or metagenomic islands hinting at a high level
of microdiversification within closely related strains
in the environment (Rodriguez-Valera et al. 2009,
Cordero & Polz 2014, Thrash et al. 2014). Genome
sequences can also be retrieved from metatranscrip-
tomes and -proteomes (Fig. 2); a mapping of reads
gives vital information on transcribed genes under
different environmental conditions and can shed
light on their role in the environment. For example,
this was demonstrated for the abundant marine bac-
terium Planktomarina temperata during a phyto-
plankton bloom (Voget et al. 2015). The design and
testing of strain- or lineage-specific probes for fluores -
cence in situ hybridization (FISH) or specific primers
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Fig. 2. Workflow for the usage of high-quality genomes from isolates as a ref-
erence for meta-omics. Fragment recruitment of metagenomic (left) and
metatranscriptomic (right) reads to full genome sequences provides valuable
information on the numerical relevance and potential microdiversification of 

different genotypes
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for qPCR (Ramachandran & Walsh 2015) and related
applications (e.g. reverse line blot hybridization,
RLBH: Jezbera et al. 2011; terminal restriction frag-
ment length polymorphism: Paver et al. 2015) is
straightforward from genomic data from cultures.
Such primers or probes facilitate investigations of the
abundance of cultured taxa in different ecosystems
and can be used to test for microdiversification, habi-
tat preferences, and seasonal dynamics of closely
related strains.

Autecology studies

Metabolic and ecophysiological traits of different
taxa can be easily examined with cultures, e.g. spe-
cific growth rates, substrate and nutrient require-
ments, temperature and salinity optima, etc. (e.g.
Hahn & Pöckl 2005, Ali et al. 2009, Kasalický et al.
2013). Although the genomic potential of un -
cultivated microbes can also be assessed with meta-
omics and SAGs, the mere presence or — in the case
of (meta-) transcriptomics — expression of functional
genes should not be over-interpreted, as it some-
times gives only limited information about specific
ecophysiological functions in the target microbes.
Single-cell methods can provide insights into the in
situ substrate acquisition of microorganisms; how-
ever, they are usually restricted to a few substrates
and are very laborious (Wagner et al. 2006, Salcher
et al. 2013). Moreover, closely related strains of the
same species or genus might differ in ecophysiolog-
ical properties, making meta-omic and FISH-based
ana lyses complicated due to the limited taxonomic
resolution of these methods. Thus, autecological

studies of cultured microbes provide much more
detail and are also easier and faster to do. Func-
tional post genomic analyses (transcriptomics, pro-
teomics, or metabolomics) of genome-sequenced
strains growing under different conditions can help
to identify their metabolic capacities (Zech et al.
2009, Smith et al. 2013)

Experimental approaches and hypothesis testing

Numerous laboratory or in situ experiments can be
set up with axenic cultures (Fig. 3). Ecophysiological
profiling of different strains can be combined with
‘-omics’ (e.g. transcriptomics, proteomics) and thus
give valuable insights in the regulation of central
metabolism under different cultivation regimes (So -
well et al. 2008, Zech et al. 2009, Steindler et al. 2011,
Smith et al. 2013). One big challenge in microbial
genomics is that a large fraction of genes cannot be
assigned to a specific function (ca. 20−30%). Such
genes or proteins of unknown function can be either
characterized by detecting homologues in closely
related organisms or by experimental evidence from
cultures (e.g. via gene overexpression), although this
is very laborious and time consuming. However, only
the latter can ultimately identify unknown or un -
expected metabolic pathways. For example, the
genome of ‘Ca. Pelagibacter ubique’ encodes an
unusual glycine-riboswitch that is essential for the
central carbon metabolism (Tripp et al. 2009). Several
‘Ca. Pelagibacter ubique’ genomes have been
screened for other unexpected metabolic pathways,
and accompanying experimental work uncovered
that these microbes are ‘methylovores,’ i.e. they can
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oxidize 1-carbon (C1) compounds for energy genera-
tion (Sun et al. 2011). Such genome-assisted studies
of laboratory cultures can also test for specific hypo -
theses that were generated during genome analyses
or field investigations, e.g. adaptations to different
substrates, temperatures, or salinity regimes (e.g.
Hahn & Pöckl 2005, Salcher et al. 2015). Finally,
interactions between different organisms like inter-
and intraspecific competition for limiting nutrients
and substrates, commensalistic, mutualistic, or syner-
gistic effects (e.g. Jagmann et al. 2010, González-
Torres et al. 2015), as well as the vulnerability to dif-
ferent mortality sources (grazing by protists, viral
lysis) and potential microbial defense mechanisms
can be addressed with isolates (Fig. 3). Predators or
phages can be identified and isolated by using cul-
tures as prey or hosts (Šimek et al. 2013, Zhao et al.
2013) and allow a detailed analysis of the fate of dis-
tinct taxa and their role in the carbon transfer to
higher trophic levels. Other experimental approa -
ches might target the response of different taxa to
stressors (e.g. salinity, UV irradiation, antibiotics),
invasion, dispersal, and adaptations to new environ-
ments (Horňák & Corno 2012, Hall & Corno 2014). To
sum up, the list of potential experiments that can be
set up with cultures is almost endless. Examples of 2
bacterial taxa (Limnohabitans spp. and ‘Ca. Methylo -
pumilus spp.’) that were used in several experimen-
tal approaches are described in detail below.

Establishment of new taxa

A valid description of new taxa is only possible if
strains can be easily cultivated in monocultures in
synthetic media and/or on agar plates and is thus
hardly practicable for obligate planktonic oligo -
trophs (see above). However, a proposal as Candi-
datus, i.e. taxa that cannot be described in sufficient
detail to warrant establishment of a novel taxon, cir-
cumvents the strict rules of the bacteriological code
and might be applicable for microbes that are hard
to isolate and grow (Murray & Stackebrandt 1995).
Both options, the proposal of a new taxon or a Can-
didatus, enable a better description and formal
naming of environmental relevant genera and spe-
cies and should include a list of ecological, pheno-
typic, and genotypic traits. Consistent naming of
closely related microbes might also help to improve
the quality of public sequence databases that in -
clude so far mainly ‘uncultivated bacteria’ and to
make straightforward cross-study comparisons
(Newton et al. 2011).

Establishment of new model systems for different
types of freshwater microbes

There is a need for more and better model organ-
isms from freshwaters, i.e. all broadly defined eco-
types of freshwater microbes should have at least 1
cultivated representative serving for experimental
studies and genetic engineering. While specialized
microbes that play vital roles in the S, N, CH4, Fe, or
H-cycle (e.g. sulfur oxidizers and reducers, nitrifying
and denitrifying bacteria) have many cultivated taxa,
model systems for the numerically dominant plank-
tonic microbes that degrade different types of dis-
solved organic carbon (aerobic chemo-organohetero -
trophs) are still rare. Thus, more planktonic microbes
need to be isolated to get additional model systems,
as not only the pool of dissolved organic matter but
also their potentially specialized degraders are very
diverse.

HOW TO ISOLATE PLANKTONIC MICROBES?
THE ‘FULL CYCLE ISOLATION APPROACH’

BASED ON TARGETED  ENRICHMENT

Analogous to the ‘full cycle rRNA approach’
(Amann et al. 1995) and the ‘full cycle metagenomics
approach’ (Bodrossy 2015), we propose a ‘full cycle
isolation approach’ that builds on ecological data
gained from exploratory studies (Fig. 4). Genome
sequences from MAGs or SAGs are a backbone for
this approach, but data might also derive from tem-
poral or spatial quantification of microbes in different
environments, from in situ experiments, in situ eco-
physiology studies (e.g. MAR-FISH, metatranscript -
omics, stable isotope probing; Wagner et al. 2006,
Wagner 2009, Franzosa et al. 2015), or any other
method that gives specific hints on the ecology of the
target microbes. Basically every published article
addressing the organism of interest adds another
piece of information to this composite ecological pic-
ture and might help to identify factors that stimulate
its growth. These ecological features can be used for
targeted enrichment of the preferred organisms in
manifold ways: raw water samples can be amended
with specific substrates (e.g. algal extracts for Flavo -
bacteriaceae, humic matter for Sphingomonadaceae,
methanol for Methylophilaceae; see ‘Introduction’ for
details and more examples), or a synthetic cultivation
medium can be designed based on reconstructed
metabolic pathways. Other means to enrich the tar-
get microbes in natural samples include food web
manipulations (e.g. the addition or removal of bac-
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terivorous predators), physical exclusion of bigger
organisms (filtration through 0.2 or 0.45 µm mem-
branes), or flow cytometric sorting of distinct popula-
tions. One should keep in mind that targeted en -
richment is a trial-and-error approach that might
some times lead to unexpected results. However, suc-
cessful enrichments can subsequently be purified to
clonal cultures by dilution to extinction. In addition,
the design of new imaginative growth media can also
be based on the interpretation of ecological or geno -
mic data (Carini et al. 2013). To close the circle, pure
cultures can be used to find exactly these genotypes
in nature, to do hypothesis-driven experiments, and
to study their geno- and phenotypic traits in depth to
get more insights into their ecophysiology (Fig. 4).

TWO EXAMPLES OF 
A SUCCESSFUL APPLICATION OF 

THE ‘FULL CYCLE ISOLATION APPROACH’

Ideally, single-cell methods, in situ quantification,
phenotypic characterization, and ‘-omic’ approaches
should be combined to study the most abundant
freshwater microbes. The availability of cultures has
accelerated development in several research lines
where environmental meta-omics and single-cell
methods can hardly achieve sufficient species-
 specific resolution. The examples below describe a
successful application of the ‘full cycle isolation
approach’ for 2 ubiquitous betaproteobacterial gen-
era. We briefly summarize the timeline from first dis-
coveries of 16S rDNA sequences in clone libraries to
a successful targeted isolation based on a mosaic of
ecological features that evolved from exploratory

studies. Moreover, we report examples of genomic
traits, specific substrate utilization, distribution in dif-
ferent environments, and experimental approaches
that address questions related to niche separation,
vulnerability to different mortality sources, and their
role in carbon flow to higher trophic levels.

Limnohabitans spp.

Environmental 16S rDNA sequences gained from
several freshwater ecosystems indicated a ubiquitous
distribution of the beta I or ‘Rhodoferax sp. BAL47’
lineage of Betaproteobacteria (Glöckner et al. 2000,
Zwart et al. 2002). These 16S rDNA sequences al -
lowed the design of a specific probe for FISH (R-
BT065, Šimek et al. 2001) that was intensely used.
For instance, these bacteria were present in high
numbers in a wide range of freshwater habitats, and
their abundances were positively correlated to higher
pH and concentrations of low-molecular-weight dis-
solved organic carbon (Warnecke et al. 2005, Šimek
et al. 2010b). Temporal monitoring in single habitats
revealed a pronounced seasonality with maxima dur-
ing phytoplankton blooms in spring (Selje et al. 2005,
Grossart et al. 2008, Šimek et al. 2008, 2014, Eckert et
al. 2012, Salcher 2014) and/or summer (Salcher et al.
2008, Buck et al. 2009, Pérez & Sommaruga 2011).
Moreover, the FISH probe was also used in various in
situ experiments that resulted in first insights in the
ecology of Limnohabitans spp. that is characterized
by: (1) a rapid growth in res ponse to environmental
changes (Šimek et al. 2006, Neuenschwander et al.
2015), (2) a high substrate versatility (Salcher et al.
2013, Rofner et al. 2016a) and uptake rates (Horňák

189

Fig. 4. Summary of the ‘full cycle isolation approach’ for a targeted isolation of microbes



Aquat Microb Ecol 77: 183–196, 2016

et al. 2006, 2008, Salcher et al. 2008, Pérez et al. 2015,
Rofner et al. 2016b), (3) a high level of vulnerability to
predation by flagellates (Jezbera et al. 2005, 2006,
Šimek et al. 2005, 2014), and (4) a strong link to
phytoplankton-derived orga nic material as a key
growth substrate (Pérez & Sommaruga 2006, 2007,
Šimek et al. 2008, 2011, Horňák et al. 2012, Paver et
al. 2013).

Based on these ecological features, numerous
strains of the genus have been brought to culture by
targeted isolation. As Limnohabitans spp. are among
the fastest-growing microbes in bac terivore-free treat-
ments (plankton samples filtered through 0.8 µm,
Šimek et al. 2001, 2006) they were used to develop a
modified filtration-acclimatization protocol (Hahn et
al. 2010a,b, Kasalický et al. 2010, 2013): water sam-
ples were filtered through a 0.8 µm polycarbonate
membrane and the filtrate was left for 12 h at 18°C,
which resulted in an approximate doubling of the
rapidly growing target group. The filtrate was subse-
quently diluted with inorganic basal medium and
inoculated onto 24-well plates (~0.5 cells well−1), and
cultures were acclimatized to growth in rich medium
by stepwise addition of increasing doses of NSY
medium (Hahn et al. 2003). This protocol has facili-
tated the isolation of more than 45 strains of diverse
sizes and morphologies and establishment of the
genus Limnohabitans with 4 validly described spe-
cies to date (Hahn et al. 2010a,b, Kasalický et al.
2010). Although several strains affiliated with Limno-
habitans spp. were already isolated earlier, they
were not further investigated and not validly de -
scribed (Page et al. 2004, Gich et al. 2005, Selje et al.
2005).

The intergenic spacer between the 16S and 23S
rRNA gene (ITS) was further used as a fine-scale
marker and resulted in the delineation into 5 line-
ages (LimA, LimB, LimC, LimD, and LimE) and sev-
eral sublineages within the most diversified lineage
LimC (Kasalický et al. 2013). These lineages could
also be discriminated by large differences in cell size
(0.02−0.9 µm3 cell volume), morphology (coccoid,
rods, curved, solenoid, ovoid), and substrate uptake
(Kasalický et al. 2013). A profound microdiversifica-
tion and habitat preference of the different lineages
across a large set of freshwater systems was discov-
ered with RLBH probes designed from ITS sequences
(Jezbera et al. 2013). Likewise, whole-genome se -
quencing of 22 strains revealed a large diversity in
genome size (2.6−5 Mbp) and genomic traits, e.g.
several alternative ways of bacterial phototrophy and
CO2 fixation were discovered in some strains of this
genus that was formerly assumed to be entirely

hetero trophic (Zeng et al. 2012, V. Kasalický
unpubl.). One lineage related to L. planktonicus was
repeatedly detected as symbionts of Daphnia sp.;
thus, not all Limnohabitans spp. live exclusively
planktonic (Freese & Schink 2011, Eckert & Pern-
thaler 2014, Peerakietkhajorn et al. 2016). The genus
is also not only restricted to freshwaters, as some
geno types occurred in brackish environments (Alon -
so et al. 2009, Piwosz et al. 2013). Limnohabitans
strains have repeatedly been used in experimental
studies with simplified microbial communities to as -
sess niche separation among coexisting strains
through interactions with particular algal species and
their exudates (Šimek et al. 2011), their vulnerability
to predation by protists or viral infection, and inter-
specific interactions with other bacteria (Šimek et al.
2010a, Horňák & Corno 2012, Hall & Corno 2014,
Salcher et al. 2016). Their role in the carbon flow to
higher trophic levels has been studied in detail in
experiments using protistan model organisms (Šimek
et al. 2010a, Salcher et al. 2016) or natural hetero -
trophic flagellate communities from different lakes
(Šimek et al. 2013, Grujčić et al. 2015). All of these
experiments proved that Limnohabitans spp. are of
high food quality for protists and have a limited abil-
ity to form grazing-resistant morphologies. They thus
play an important role in channeling carbon to
higher trophic levels in aquatic food webs, although
with striking strain-specific as well as season- and
site-specific patterns. In summary, the genus Limno-
habitans is very diverse, and individual strains differ
dramatically in their ecology; however, they also
have common features, i.e. fast growth and high
importance in microbial food webs. Thus, Limno -
habi tans spp. represent perfect model organisms for
diversified copiotrophs with high environmental
 relevance.

‘Ca. Methylopumilus spp.’

Similar to Limnohabitans, the beta IV or LD28 line-
age of Betaproteobacteria was also first discovered
from environmental 16S rDNA sequences (Zwart et
al. 1998, 2002, Glöckner et al. 2000) and frequently
recovered thereafter (Newton et al. 2011). The appli-
cation of a general FISH-probe targeting the whole
family (Methylophilaceae) resulted in high numbers
of planktonic microbes in hypolimnetic samples,
while they were rare in surface samples during
 summer (Salcher et al. 2008, Jezbera et al. 2012). The
development of a specific probe (LD28-1017) proved
this spatial distribution (Salcher et al. 2011a). Their
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close phylogenetic relation to planktonic marine
(Giovannoni et al. 2008) and freshwater sediment
methylotrophs (Chistoserdova 2015) hinted at a
methylotrophic lifestyle, i.e. a specialization to C1

substrates. Indeed, MAR-FISH revealed no or only a
low uptake of amino acids and sugars (Salcher et al.
2008, 2013).

The isolation of a first strain was reported early
(Gich et al. 2005), but this strain was not further
investigated. Dilution to extinction with sterile fil-
tered and autoclaved lake water as medium and a
0.4 µm filtered inoculum resulted in the isolation of
>120 strains, and the LD28 lineage as well as the
closely related PRD01a011B lineage were described
as Candidatus (‘Ca. Methylopumilus planktonicus’
and ‘Ca. M. turicensis;’ Salcher et al. 2015). A re -
cently modified targeted isolation approach with size
fractionation and enrichment in artificial medium
containing only methanol and methylamine as car-
bon sources resulted in a greatly enhanced cul-
tivability of planktonic methylotrophs with >90 new
isolates from different lakes (M. M. Salcher unpubl.
data).

All strains affiliated with ‘Ca. Methylopumilus
plank tonicus’ are of conspicuous small cell size
(0.02− 0.07 µm3, i.e. ultramicrobacteria) and display
very slow growth (μmax = 0.4 d−1). Whole-genome
sequencing of several strains revealed very small and
streamlined genomes (1.3 Mbp) with a low GC con-
tent and a reduced number of genes encoding
methylotrophic pathways compared to their relatives
from freshwater sediments. Therefore, these micro -
bes follow a typical oligotrophic lifestyle, similar to
their marine sister lineage OM43 (Giovannoni et al.
2008). The genomes lacked genes for methylamine
oxidation, thus these microbes seemed to be unable
to utilize this C1 compound. However, growth of one
strain was enhanced upon addition of methylamine
to sterile lake water, hinting at so far unknown path-
ways or genes (Salcher et al. 2015). Genomic se -
quences of the gene encoding methanol dehydro -
genase (xoxF) from ‘Ca. Methylopumilus spp.’ and
the marine OM43 were used to search in numerous
metagenomes and to develop specific qPCR primers
that enabled a quantification of gene numbers and
mRNA transcripts in different freshwater, estuarine,
and marine habitats (Ramachandran & Walsh 2015).
This gene had a widespread distribution in lakes,
rivers, and coastal marine sites, and highest expres-
sion coincided with a phytoplankton bloom (Rama -
chandran & Walsh 2015). This is in accordance with
seasonal monitoring of the abundances of ‘Ca.
Methylo pumilus sp.’ in different lakes, where max-

ima occurred concomitantly with blooms of diatoms
and/or cyanobacteria (Li et al. 2015, Salcher et al.
2015, Woodhouse et al. 2016), indicating that C1 sub-
strates supporting their growth were presumably
released from primary producers. Seasonal monitor-
ing also suggested an adaptation to cold water tem-
peratures, a hypothesis that was verified by the
observation that cultures reached higher densities at
colder incubation temperatures (Salcher et al. 2015).
In summary, ‘Ca. Methylopumilus spp.’ are perfect
model organisms for specialized oligotrophs with
very reduced genomes, and their close phylogenetic
relationship to planktonic marine and freshwater
sediment microbes makes them ideal for evolution-
ary studies regarding genome streamlining, horizon-
tal gene transfer, habitat transitions, and ecological
specialization (Walsh et al. 2013, Ramachandran &
Walsh 2015, Salcher et al. 2015, Jimenez-Infante et
al. 2016).

CONCLUSIONS AND FUTURE PERSPECTIVES

We hope that our presented ideas and examples
may inspire readers (1) to enrich and isolate plank-
tonic freshwater microbes (Fig. 4), (2) to set up exper-
iments with cultured strains (Fig. 3), and (3) to use
fine-resolution ‘-omics’ approaches in combination
with classical ecophysiological profiling and in situ
methods. Continuing efforts will hopefully result in
the successful isolation of more freshwater microbes,
especially of those that have thus far been elusive.
The ‘full cycle isolation approach’ for targeted culti-
vation (Fig. 4) might be a future direction, as the
increasingly available tools of (meta-)omics shed
more light on the ecology of so far uncultivated taxa
which might help to enrich and isolate the target
microbes and to design specific media that support
their growth.
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