AEI 6:233-239 (2015)  -  DOI: https://doi.org/10.3354/aei00129

NOTE
First report on in situ biodeposition rates of ascidians (Ciona intestinalis and Styela clava) during summer in Sanggou Bay, northern China

Zhanhui Qi1,2,3, Tingting Han1,2, Jihong Zhang3, Honghui Huang1,2, Yuze Mao3, Zengjie Jiang3, Jianguang Fang3,*

1Key Laboratory of Fishery Ecology and Environment, Guangdong Province and
2Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture; South China Sea Fisheries Research Institute, CAFS, Guangzhou 510300, PR China
3Yellow Sea Fisheries Research Institute, CAFS, Qingdao 266071, PR China
*Corresponding author:

ABSTRACT: Ascidians are globally important members of marine fouling communities. We measured in situ biodeposition rates of Ciona intestinalis and Styela clava, common biofoulers of aquaculture infrastructure, in Sanggou Bay, northern China, during September. Ascidian numbers were recorded within a scallop Chlamys farreri farming zone to assess biodeposit loading. Both ascidians were most abundant on lantern nets and scallop shells in August and September. The average densities of C. intestinalis and S. clava in the farming zone in September were approximately 329 and 22 ind. m-2, respectively, and their biodeposition rates were 32.1 and 121.2 mg dry material ind.-1 d-1, respectively. Total daily biodeposit production by ascidians in September within the scallop farming zone may amount to 13.24 g m-2, with daily organic matter, C, N, and P biodeposition rates of 1.88, 0.94, 0.11, and 0.98 × 10-2 g m-2, respectively. The predicted daily biodeposit production by C. intestinalis and S. clava within the scallop farming zone in the bay during September was 105.9 t dry material, 7.52 t C, 0.86 t N, and 0.078 t P. By comparison, drop-off to the sea floor was approximately 143.0 t of dry matter for an entire growing season, which would be a relatively small input if averaged on a daily basis. However, some of the drop-off is expected to occur as a short-duration pulse of material (e.g. during cleaning), which may be relatively important in terms of benthic effects. The results suggest that the biodeposition processes and drop-off of C. intestinalis and S. clava may play an important role in coupling material fluxes from the water column to the seabed.


KEY WORDS: Biofouling · Ascidians · Ciona intestinalis · Styela clava · Biodeposition · Coastal suspension aquaculture · Impact


Full text in pdf format  
Cite this article as: Qi Z, Han T, Zhang J, Huang H, Mao Y, Jiang Z, Fang J (2015) First report on in situ biodeposition rates of ascidians (Ciona intestinalis and Styela clava) during summer in Sanggou Bay, northern China. Aquacult Environ Interact 6:233-239. https://doi.org/10.3354/aei00129

Export citation
Mail this link - Contents Mailing Lists - RSS
- -