Inter-Research > MEPS > v150 > p229-248  
MEPS
Marine Ecology Progress Series

via Mailchimp

MEPS 150:229-248 (1997)  -  doi:10.3354/meps150229

Organic carbon balance and net ecosystem metabolism in Chesapeake Bay

Kemp WM, Smith EM, Marvin-DiPasquale M, Boynton WR

The major fluxes of organic carbon associated with physical transport and biological metabolism were compiled, analyzed and compared for the mainstem portion of Chesapeake Bay (USA). In addition, 5 independent methods were used to calculate the annual mean net ecosystem metabolism (NEM = production - respiration) for the integrated Bay. These methods, which employed biogeochemical models, nutrient mass-balances and summation of individual organic carbon fluxes, yielded remarkably similar estimates, with a mean NEM of +50 g C m-2 yr-1 (± SE = 7.5), which is approximately 8% of the estimated annual average gross primary production. These calculations suggest a strong cross-sectional pattern in NEM throughout the Bay, wherein net heterotrophic metabolism prevails in the pelagic zones of the main channel, while net autotrophy occurs in the littoral zones which flank the deeper central area. For computational purposes, the estuary was separated into 3 regions along the land-sea gradient: (1) the oligohaline Upper Bay (11% of total area); (2) the mesohaline Mid Bay (36% of area); and (3) the polyhaline Lower Bay (53% of area). A distinct regional trend in NEM was observed along this salinity gradient, with net heterotrophy (NEM = -87 g C m-2 yr-1) in the Upper Bay, balanced metabolism in the Mid Bay and net autotrophy (NEM = +92 g C m-2 yr-1) in the Lower Bay. As a consequence of overall net autotrophy, the ratio of dissolved inorganic nitrogen (DIN) to total organic nitrogen (TON) changed from DIN:TON = 5.1 for riverine inputs to DIN:TON = 0.04 for water exported to the ocean. A striking feature of this organic C mass-balance was the relative dominance of biologically mediated metabolic fluxes compared to physical transport fluxes. The overall ratio of physical TOC inputs (I) to biotic primary production (P) was 0.08 for the whole estuary, but varied dramatically from 2.3 in the Upper Bay to 0.03 in the Mid and Lower Bay regions. Similarly, ecosystem respiration was some 6-fold higher than the sum of all physical carbon sinks. This general negative correspondence between I:P ratio and NEM, which occurred among Bay regions, was also evident in data available for organic C fluxes in other coastal ecosystems. An inverse relationship between NEM and P, postulated in a previous study, did not apply to Chesapeake Bay, and closer examination of available data revealed the importance of the loading ratio of DIN:TOC as a key control on coastal NEM. It is proposed here that the general global trend of coastal eutrophication will lead to increasing values of NEM in estuaries worldwide. The management implications of this trend are complex, involving both increased potential fisheries harvest and decreased demersal habitat.


Net ecosystem metabolism · Production · Respiration · Organic carbon · Inorganic nutrients · Estuaries · Chesapeake Bay


Full text in pdf format
 Previous article Next article