Inter-Research > MEPS > v536 > p149-162  
Marine Ecology Progress Series

via Mailchimp

MEPS 536:149-162 (2015)  -  DOI:

High ammonium availability amplifies the adverse effect of low salinity on eelgrass Zostera marina

Beatriz Villazán1, Tiina Salo2,3, Fernando G. Brun1, Juan J. Vergara1, Morten F. Pedersen2,*

1Departamento de Biología (Área de Ecología), Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEIMAR), Puerto Real 11510, Cádiz, Spain
2Department of Environmental, Social and Spatial Change (ENSPAC), Roskilde University, PO Box 260, 4000, Roskilde, Denmark
3Department of Biosciences, Åbo Akademi University, Artillerigatan 6, 20520 Åbo, Finland
*Corresponding author:

ABSTRACT: Climate change intensifies the frequency and intensity of rainfall events, which increases the discharge of freshwater and nutrients to coastal areas. This may lower salinity and increase nutrient availability and, thus, affect estuarine eelgrass populations. We studied the interactive effect of increasing NH4+ levels and low salinity on estuarine eelgrass Zostera marina, grown in microcosm at various combinations of NH4+ enrichment (0, 10 and 25 µM) and salinity (5, 12.5 and 20). Increasing NH4+ had a positive effect on eelgrass performance as long as salinity was kept at ambient level (20). N enrichment was followed by an increase in pigments, photosynthesis and various growth variables and a decrease in stored carbon concentrations (sucrose and starch). Low salinity had an overall negative effect on plant fitness; pigment concentration, photosynthesis and growth were reduced while mortality increased. Exposure to low salinity was also followed by a decrease in sucrose, suggesting that it was used as an osmolyte and/or that photosynthesis could not cover energy requirements needed for osmoregulation or repairing processes. Concomitant exposure to high NH4+ and low salinity turned the positive effect of NH4+ into a strong, negative synergistic effect. Several growth-related variables were affected significantly and mortality increased substantially. We suggest that this simultaneous exposure intensified competition for energy and C skeletons affecting other metabolic processes (e.g. growth, repair processes) negatively. Our results suggest that climate change driven alterations in precipitation and NH4+ loading might seriously impact estuarine eelgrass communities.

KEY WORDS: Carbon reserves · Dissolved inorganic nitrogen · Eutrophication · Hyposalinity · Osmoregulation · Seagrass

Full text in pdf format
Cite this article as: Villazán B, Salo T, Brun FG, Vergara JJ, Pedersen MF (2015) High ammonium availability amplifies the adverse effect of low salinity on eelgrass Zostera marina. Mar Ecol Prog Ser 536:149-162.

Export citation
Share:    Facebook - - linkedIn

 Previous article Next article