MEPS 609:69-86 (2019)  -  DOI: https://doi.org/10.3354/meps12810

Patterns of diatom diversity correlate with dissolved trace metal concentrations and longitudinal position in the northeast Pacific coastal-offshore transition zone

P. Dreux Chappell1,2,*, E. Virginia Armbrust3, Katherine A. Barbeau4, Randelle M. Bundy3,4, James W. Moffett5, Jagruti Vedamati5, Bethany D. Jenkins1

1Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
2Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA 23529, USA
3School of Oceanography, University of Washington, Seattle, WA 98195, USA
4Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, USA
5Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
*Corresponding author:

ABSTRACT: Diatoms are important primary producers in the northeast Pacific Ocean, with their productivity closely linked to pulses of trace elements in the western high nitrate, low chlorophyll (HNLC) region of the oceanographic time series transect ‘Line P.’ Recently, the coastal-HNLC transition zone of the Line P transect was identified as a hotspot of phytoplankton productivity, potentially controlled by a combination of trace element and macronutrient concentrations. Here we describe diatom community composition in the eastern Line P transect, including the coastal-HNLC transition zone, with a method using high-throughput sequencing of diatom 18S gene amplicons. We identified significant correlations between shifting diatom community composition and longitude combined with concentrations of dissolved copper and 2 other dissolved trace metals (dissolved Fe [dFe] and/or dissolved zinc) and/or a physical factor (salinity or density). None of these variables on its own was significantly correlated with shifts in community composition, and 3 of the factors (dFe, salinity, and density) correlated with one another. Longitude could incorporate multiple factors that may influence diatom communities, including distance from shore, proximity of sampling stations, and an integration of previous pulses of macro- and micro-nutrients. We also evaluated in situ Fe limitation of the diatom Thalassiosira oceanica using a quantitative reverse-transcription polymerase chain reaction method, and found biological evidence of Fe stress in samples from the coastal-HNLC transition zone. Combined, our results support a prior hypothesis that dissolved trace metals as well as longitudinal distance may be important to diatom diversity in the coastal-HNLC transition zone of the Line P transect.


KEY WORDS: Diatom diversity · Iron · Line P · Transition zone


Full text in pdf format  
Cite this article as: Chappell PD, Armbrust EV, Barbeau KA, Bundy RM, Moffett JW, Vedamati J, Jenkins BD (2019) Patterns of diatom diversity correlate with dissolved trace metal concentrations and longitudinal position in the northeast Pacific coastal-offshore transition zone. Mar Ecol Prog Ser 609:69-86. https://doi.org/10.3354/meps12810

Export citation
Mail this link - Contents Mailing Lists - RSS
- -