Inter-Research > MEPS > v708 > p1-20  
Marine Ecology Progress Series

via Mailchimp

MEPS 708:1-20 (2023)  -  DOI:

Rebuilding Mediterranean marine resources under climate change

Fabien Moullec1,*, Nicolas Barrier2, François Guilhaumon3,4, Myron A. Peck1, Caroline Ulses5, Yunne-Jai Shin3,6

1Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
2MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 34203 Sète, France
3MARBEC, Univ Montpellier, IRD, CNRS, Ifremer, 34095 Montpellier, France
4UMR ENTROPIE, Université de la Réunion, IRD, CNRS, Ifremer, Université de la Nouvelle-Calédonie, 97744 Saint-Denis, France
5LEGOS, Université de Toulouse, CNES/CNRS/IRD/UT3, 31400 Toulouse, France
6Marine Research (MA-RE) Institute and Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
*Corresponding author:

ABSTRACT: The Mediterranean Sea ranks among the most overexploited and fastest-warming ocean regions. This situation calls for urgent development of global change scenarios and models of marine biodiversity to anticipate changes and support ecosystem-based management strategies across the entire Mediterranean Sea. Using a new end-to-end modelling chain for the whole Mediterranean Sea, we explored the potential effects of changes in fishing pressure on marine resources and ecosystem structure and functioning under a worst-case climate change scenario (RCP8.5). We found that a decrease in fishing mortality or an improvement in fishing selectivity could increase the total biomass and total catch of high trophic level species by the middle and end of the 21st century, especially the biomass of demersal, large pelagic and benthic species, thereby reversing the projected climate-induced decrease in their biomass and catch by the end of the century in the western Mediterranean basin. In contrast, climate change could offer opportunities for some eastern Mediterranean fisheries to increase catches of thermophilic and/or exotic species benefiting from new favourable environmental conditions. Based on a suite of ecological indicators, our results indicated clear positive effects of a more sustainable fisheries management on ecosystem structure and functioning. However, a decrease in fishing pressure may not fully compensate for climate-induced changes on marine resources and ecosystems, but rather buffer some projected negative impacts. Our study highlights the need for a more sustainable exploitation of fisheries resources to restore marine ecosystems and increase their resilience in a global change context.

Key words: Fishing scenarios · Climate change · Biodiversity · End-to-end model · OSMOSE model · Mediterranean Sea

Full text in pdf format
Information about this Feature Article
Supplementary material
Cite this article as: Moullec F, Barrier N, Guilhaumon F, Peck MA, Ulses C, Shin YJ (2023) Rebuilding Mediterranean marine resources under climate change. Mar Ecol Prog Ser 708:1-20.

Export citation
Share:    Facebook - - linkedIn

Next article